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Instructions for Theoretical Exam

The theoretical examination consists of 4 long answer questions over 2 full days from August 30, 12:00AM
UTC to September 1, 12:00 AM UTC.

• The team leader should submit their final solution document in this google form. We
don’t anticipate a tie, but in the rare circumstance that there is one, the time you submit
will be used to break it.

• If you wish to request a clarification, please use this form. To see all clarifications, view this document.

• Participants are given a Google Form where they are allowed to submit up 50 MB of data for each
problem solution. It is recommended that participants write their solutions in LATEX. However,
handwritten solutions (or a combination of both) are accepted too. If participants have more than one
photo of a handwritten solution (jpg, png, etc), it is required to organize them in the correct order in
a pdf before submitting. If you wish a premade LATEX template, we have made one for you here.

• Since each question is a long answer response, participants will be judged on the quality of your work.
To receive full points, participants need to show their work, including deriving equations. As a general
rule of thumb, any common equations (such as the ones in the IPhO formula sheet) can be cited
without proof.

• Remember to state any approximations made and which system of equations were solved after every
step. Explicitly showing every step of algebra is not necessary. Participants may leave all final answers
in symbolic form (in terms of variables) unless otherwise specified. Be sure to state all assumptions.

Problems

• T1: Penned Particles

• T2: Bouncy Bubble

• T3: Stellar Shaping

• T4: Hot Solids

https://forms.gle/3hGRuuoMxqosZzc4A
https://forms.gle/CgtWncLGQGWLLZVy9
https://docs.google.com/document/d/1R9cwXuNRaYV00UPSfFl0sAOuBcJ47xE9kvfVsDOCavY/edit?usp=sharing
https://www.overleaf.com/read/nktkdjdqvwfs#ee4a4f
https://www.ioc.ee/~kalda/ipho/formulas.pdf
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List of Constants

• Proton mass, mp = 1.67 · 10−27 kg

• Neutron mass, mn = 1.67 · 10−27 kg

• Electron mass, me = 9.11 · 10−31 kg

• Avogadro’s constant, N0 = 6.02 · 1023 mol−1

• Universal gas constant, R = 8.31 J/(mol ·K)

• Boltzmann’s constant, kB = 1.38 · 10−23 J/K

• Electron charge magnitude, e = 1.60 · 10−19 C

• 1 electron volt, 1 eV = 1.60 · 10−19 J

• Speed of light, c = 3.00 · 108 m/s

• Universal Gravitational constant,

G = 6.67 · 10−11 (N ·m2)/kg2

• Solar Mass

M⊙ = 1.988 · 1030 kg

• Acceleration due to gravity, g = 9.8 m/s2

• 1 unified atomic mass unit,

1 u = 1.66 · 10−27 kg = 931 MeV/c2

• Planck’s constant,

h = 6.63 · 10−34 J · s = 4.41 · 10−15 eV · s

• Permittivity of free space,

ϵ0 = 8.85 · 10−12 C2/(N ·m2)

• Coulomb’s law constant,

k =
1

4πϵ0
= 8.99 · 109 (N ·m2)/C2

• Permeability of free space,

µ0 = 4π · 10−7 T ·m/A

• Magnetic constant,

µ0
4π

= 1 · 10−7 (T ·m)/A

• 1 atmospheric pressure,

1 atm = 1.01 · 105 N/m2 = 1.01 · 105 Pa

• Wien’s displacement constant, b = 2.9 ·
10−3 m ·K

• Stefan-Boltzmann constant,

σ = 5.67 · 10−8 W/m2/K4
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1 Penned Particles

A Penning trap is a device used to store charged particles using static magnetic and electric fields. In this
problem we will investigate the motion of an ion inside the trap.

1.1

(a) The trap is a cylinder, parallel to the z-axis, with the origin at the center. Inside, the electric potential

is V = V0
z2−r2

2d2
, where d is the characteristic dimension of the trap. In order to generate the quadrupole

field inside, there are two sets of electrodes: two endcaps and the ring electrode, which are held at potential
difference V0, and are solids of revolution. Refer to part (e) for a diagram. Let the minimum distance
between endcaps be 2z0, and the smallest inside diameter of the ring be 2r0.

• Take a cross section parallel to the z-axis through the origin. What are the equations of the cross
section of the ring and endcap electrodes?

• Express d in terms of r0 and z0.

(b) The magnetic field B = B0ẑ is homogeneous inside the trap. Suppose we have a particle with charge q
and mass m. Assume its speed is nonrelativistic, and neglect energy loss from radiation. Throughout the
rest of the problem, assume q is positive.

• The z-axis motion is simple harmonic. Find the angular frequency ωz.

• Write the differential equation for the motion in the xy-plane.

• Suppose ωz = 0. Solve the differential equation, and find the angular frequency of the motion ωc. This
is the cyclotron frequency.

Typically, ωc ≫ ωz. Assume this for the rest of the problem.

(c) The motion of the electron in the xy-plane consists of two separate uniform circular motions overlaid on
top of each other. One is the cyclotron motion and the other is the magnetron motion. Find expressions for
the angular frequencies of the cyclotron motion and the magnetron motion, in terms of ωz and ωc.

1.2

(d) We will now consider the effects of radiation. Typically, the magnetron motion has a much lower frequency
than the cyclotron motion, so the decay of the magnetron motion is negligible. The power radiated by an
accelerating particle is:

P =
q2a2

6πε0c3
.

• The energy of the orbit decays as e−t/γc . Find γc.

• Now consider the radiation damping of the axial motion. The energy of the oscillation decays as e−t/γz .
Find γz.
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(e) For an electron at typical ωc, γc is quite small, allowing for easy damping. However, γz is much larger,
and for a proton, radiation damping is insignificant. In order to cool large particles, a circuit is used instead.
We first consider axial damping.

The oscillations of the ion induce image charges in the electrode, which can be interpreted as a current I.
See the following circuit:

You may ignore the quadrupole potential in this part.

• There will be a potential difference of IR between the endcap and the ring (as well as the other endcap).
This will produce an electric field Eẑ proportional to I inside the trap. Find E, up to a constant factor
κ, which depends on the geometry of the electrodes. Hint : if the endcaps are infinite flat planes, κ is
equal to 1.

• Consider the power lost through the resistor. Use this to derive the force on the ion, f = −mζż. Write
an expression for ζ.

(f) To conclude, we will consider how to cool the magnetron motion (decrease its radius).

• Find the total energy of the magnetron motion. Assume z = 0.

The process works as follows. We shine photons of energy ℏ(ωz + ωm), which interact with the ion. Let the
quantum numbers of the z motion and the magnetron motion be k and l respectively. Then, the cooling
transition is from (k, l) → (k + 1, l − 1), and the heating transition is from (k, l) → (k − 1, l + 1). Using
quantum mechanics, we can derive that these happen at rates proportional to (k+1)l and k(l+1) respectively.
The magnetron motion will be cooled until l = k, at which point it will be in equilibrium, and there is no
long term change in temperature.

• We will now derive the equilibrium energy of the magnetron motion. Assume that at equilibrium, the
axial and magnetron motions are at temperatures Tz and Tm respectively. As we continue to shine
photons, consider the change in entropy. Use this to derive Tm in terms of ωm, ωz, and Tz.
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Penned Particles – Solution

Total: 35.0 pts

The problem originally stated the potential as V = V0
z2−r2

2d2
. However, this has a non-zero Laplacian, so

it is invalid; a valid potential would be V = V0
2z2−r2

2d2
. We will give full points for using either potential

throughout the problem.

(a) The electrodes are equipotentials. The potential of the endcaps is V = V0
z20
2d2

, while the potential of

the ring is V0
−r20
2d2

. Thus, d2 = 1
2(z

2
0 + r20). The equation for the endcaps is z2 = z20 + r2, and for the ring is

z2 = r2 − r20.

Grading Scheme: 5.0 pts total.

• 1.5 points for realizing the electrodes are equipotentials, or equivalent.

• 1.5 points for correct equations for the cross sections: z2 = z20 + r2 and z2 = r2 − r20, OR

z2 = z20 +
1
2r

2 and z2 = 1
2r

2 − 1
2r

2
0.

• 2.0 points for calculation of potential of endcaps and and ring, and using this to find an expression for
d: d = 1

2(z
2
0 + r20), OR d = 1

2(2z
2
0 + r20).

(b) Because E = −V0 z
d2
, we find ωz =

√
qV0

md2
. Then, the equations of motion are:

mr̈ = q(E+ ṙ×B)

r̈ = q(V0r/md
2 + ṙ×B/m)

r̈ = ω2
zr+ qṙ×B/m

Some contestants wrote their equations in terms of x and y coordinates; we will also accept those as valid.

We have r̈ = qṙ×B/m. It’s evident the particle performs uniform circular motion at frequency ωc =
qB0

m .
Note that ωc points opposite B.

Grading Scheme: 7.0 pts total.

• 2 points for correct axial angular frequency: ωz =
√

qV0

md2
OR ωz =

√
2qV0

md2
.

• 2 points for correct differential equations.

• 3 points for the correct cyclotron frequency.

(c) To start, we have r̈ = ω2
zr+ ṙ× ωc. Suppose we have r = (r, ωt) in polar coordinates. Then ṙ = ωrθ̂, and

r̈ = −ω2r. We plug these into the differential equation, to get

−ω2r = ω2
zr− ωωcr.

Using the quadratic equation, this gives us

ω =
ωc ±

√
ω2
c − 4ω2

z

2
.

Recall that when ωz = 0, the cyclotron motion has frequency ωc, so we take

ω′
c =

wc +
√
w2
c − 4ω2

z

2
.
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This is less than ωc because of the radial potential pushing the ion outwards. Then, the magnetron frequency
is

ωm =
ωc −

√
ω2
c − 4ω2

z

2
≈ ω2

z

ωc
.

We thus have ωc ≫ ωz ≫ ωm.

Grading Scheme: 8.0 pts total.

• 3 points for guessing a circular/periodic/complex exponential solution to the differential equation.

• 4 points for solving the differential equation and correctly deriving the two possible frequencies.

• 1 point for correctly identifying which frequency is the magnetron frequency and which is the cyclotron
frequency.

(d) The original formula for power provided was missing a factor of π; we will not penalize solutions that are
missing this factor. Note that E = 1

2mṙ2 = 1
2mω

2
cr

2. The acceleration is ω2
cr, so

P =
dE

dt
= −q

2ω4
cr

2

6ε0c3
= −E q2ω2

c

3mε0c3
.

Thus,

γc =
3mε0c

3

q2ω2
c

.

The energy is qV0
z2m
2d2

= 1
2mω

2
zz

2
m, where zm is the amplitude of the oscillation. We have z = zm sinωzt, and

a = −ω2
zz. Averaged over one oscillation, ⟨a2⟩ = 1

2ω
4
zz

2
m. We then have

P = −
q2 · 1

2ω
4
zz

2
m

6ε0c3
.

We then have

γz =
6mε0c

3

q2ω2
z

.

Grading Scheme: 5.0 pts total.

• 0.5 points for correct expression for the energy of the cyclotron motion.

• 1 point for correct expression for the power.

• 0.5 points for correct damping constant γc.

• 1 point for correct expression for the energy of the axial motion.

• 1.5 points for the correct expression for the time-averaged power.

• 0.5 points for correct damping constant γz.

(e) Supposing that the endcaps were infinite flat planes, the electric field will be IR
2z0

. So we have E = κIR
2z0

.

The power on the ion is F ż = qEż, which we equate to RI2:

q
κIR

2z0
ż = RI2 ⇒

I =
κqż

2z0
.
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Then

F = q
κIR

2z0
= q2

κ2R

4z20
ż.

So we have

ζ =
R

m

(
κq

2z0

)2

.

Grading Scheme: 5.0 pts total.

• 1.5 points for the correct electric field at the center of the trap.

• 1.5 points for correct power on the ion, and equating it to the power lost through the resistor.

• 1.5 points for solving for current in terms of ż, or equivalent derivation of the force in terms of ż.

• 0.5 point for correct expression for ζ.

(f) Note that:

E =
1

2
mω2

mr
2 + qV =

1

2
mω2

mr
2 − qV0r

2/2d2 =

1

2
mω2

mr
2 − 1

2
mω2

zr
2.

Since ωz ≫ ωm this is obviously negative.

Since the system is in equilibrium, over the long run the change in entropy must be zero. When photons
interact with the ion, we can view it as adding heat Qz = ℏωz and Qm = ℏωm to reservoirs at temperatures
Tz and Tm respectively. The change in entropy is

∆S =
Qz

Tz
+
Qm

Tm
= 0.

. So, we have

Tm = −ωm

ωz
Tz.

Many teams reported Tm to be positive. Here is a subtle point about negative temperature. Earlier in the
problem, we derived that the total energy of the magnetron motion was negative. If we were to add energy,
the radius would shrink. Very informally, temperature is defined such that TdS = dE, and intuitively, an
increase in the radius of the orbit is an increase in entropy. (This can all be formalized with quantum
mechanics). Adding energy decreases the entropy, which is why Tm is negative.

Grading Scheme: 5.0 pts total.

• 1 point for correct expression for the energy (up to first order).

• 3 points for conserving entropy.

• 1 point for correct expression for Tm. −0.5 points if positive.
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2 Bouncy Bubble

In this problem, we will investigate the interaction between fast oscillations and gradual changes in a physical
system.

2.1

A large volume of incompressible, non-viscous liquid with density ρ is kept at temperature Tc and pressure
Pc. A spherical bubble consisting of N particles of ideal gas with temperature T0 > Tc is introduced into the
liquid. Neglect surface tension and any heat transfer between the liquid and the gas.

(a) Find the equilibrium radius R0 of the bubble.

The bubble’s radius is perturbed slightly from equilibrium and its oscillations are observed; the gas remains
near thermal equilibrium at all times. Assume that the motion of the liquid is laminar and radial, and that
the density of the gas is negligible compared to ρ. You may express future answers in terms of R0.

(b) Find the frequency ω of the bubble’s small oscillations.

2.2

Now, assume that the interface between the gas and the liquid has thermal conductance per unit area κ.
Then, because of heat loss, the bubble will shrink over time, approaching a final radius Rf (which you may
use in future answers). The shrinkage is slow enough that the kinetic energy of the liquid can be neglected.

(c) If the bubble starts at radius R0, find the approximate time τ until it shrinks to radius (R0 + Rf )/2.
Express your answer to the lowest order in the quantity α = R0/Rf − 1.

(d) Next, the bubble starts off oscillating around R0 with amplitude R0δ0, where δ0 ≪ 1; assume that the
oscillations are much faster than the shrinkage. Find the time-averaged final radius R′

f of the bubble, to the
lowest order in δ0. Qualitatively explain the reason for any difference between R′

f and Rf .

(e) Given the situation in part (d), find the approximate time τ ′ until the bubble’s time-averaged radius
shrinks to (R0 +R′

f )/2, to the lowest orders in α′ = R0/R
′
f − 1 and δ0.
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Bouncy Bubble – Solution

Total: 25.0 pts

(a) At equilibrium, the pressure in the bubble is Pc. Using the Ideal Gas Law:

PcV = Pc ·
4

3
πR3

0 = NkT0 ⇒ R0 =
3

√
3NkT0
4πPc

Grading Scheme: 1.0 pts total.

• 0.5 pts for use of the Ideal Gas Law.

• 0.5 pts for a correct expression for R0.

(b) Let the bubble have radius R0 + x. Setting U = 0 at equilibrium, the work-energy theorem implies:

U =

∫ x

0
4πR2

0(Pc − P ) da

Using PV 5/3 = const:

U =

∫ x

0
4πR2

0

(
Pc −

Pc

(
4
3πR

3
0

)5/3(
4
3π(R0 + a)3

)5/3
)
da

=

∫ x

0
4πR2

0Pc

(
1−

(
1 +

a

R0

)−5
)
da

≈
∫ x

0
20πPcR0a da

= 10πPcR0x
2

The kinetic energy comes from the motion of the liquid. If the bubble’s radius is changing at rate ẋ, the

liquid at radius r must have speed
R2

0

r2
ẋ by incompressibility. Thus:

K =

∫ ∞

R

1

2
(4πρr2 dr)

(
R2

0

r2
ẋ

)2

= 2πρR4
0ẋ

2

∫ ∞

R

1

r2
dr = 2πρR3

0ẋ
2

We find ω =
1

R0

√
5Pc

ρ
.

Grading Scheme: 5.0 pts total

• 1.0 pts for using the work-energy theorem to find an integral for U in terms of Pc − P

• 1.0 pts for using the adiabatic condition to linearize Pc − P .

• 0.5 pts for a correct expression for U .

• 1.0 pts for using incompressibility to derive the velocity profile of the liquid, v(r) ∝ 1/r2.

• 0.5 pts for a correct expression for K.

• 1.0 pts for a correct expression for ω.
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(c) Because the bubble begins at equilibrium and shrinks slowly, it will remain near equilibrium. Thus, we

will always have T =
4πPcr

3

3Nk
. Because the external pressure is constant:

Ḣ = Q̇ = −4πr2κ(T − Tc)

Using H =
5

2
NkT , we have:

Ḣ =
5

2
NkṪ =

5

2
Nk

dT

dr
ṙ = 10πPcr

2ṙ ⇒ ṙ = − 2κ

5Pc
(T − Tc) = − 8πκ

15Nk

(
r3 − 3NkTc

4πPc

)
Note that R3

f =
3NkTc
4πPc

. Separating variables:

∫ (R0+Rf )/2

R0

1

r3 −R3
f

dr =

∫ τ

0
− 8πκ

15Nk
dt ⇒ 1

R2
f

∫ 1+α

1+α/2

1

x3 − 1
dx =

8πκ

15Nk
τ

∫ 1+α

1+α/2

1

x3 − 1
dx ≈

∫ 1+α

1+α/2

1

3(x− 1)
− 1

3
dx =

ln(2)

3
− α

6

Thus, τ =
5 ln(2)Nk

8πκR2
f

(
1− α

2 ln(2)

)
.

Grading Scheme: 5.0 pts total.

• 0.5 pts for a correct expression for Q̇ in terms of T − Tc

• 1.0 pts for equating Q̇ to Ḣ or CpṪ due to constant external pressure.

• 1.5 pts for substituting the expression for T and obtaining a correct differential equation in r.

• 1.0 pts for separating variables and approximating the integrand as shown.

• 1.0 pts for a correct final answer, or 0.5 pts for an answer with a correct leading term.

(d) Let the oscillating radius be r(1 + δ cos(ωt)). We claim that the total energy E of the oscillations is

proportional to ω, giving δ =
R2

0

r2
δ0. To see this, we consider the adiabatic invariant, I: the area enclosed by

the system’s motion in phase space. For any simple harmonic oscillator, I = 2πE/ω. Crucially, I remains
approximately constant under slow external changes, giving E ∝ ω as desired. You can read more here.

Using TV 2/3 = const, the oscillating temperature is
T

(1 + δ cos(ωt))2
. Thus, we have:

Q̇ = −4πκr2(1 + δ cos(ωt))2
(

T

(1 + δ cos(ωt))2
− Tc

)
= −4πκr2

(
T − (1 + 2δ cos(ωt) + δ2 cos2(ωt))Tc

)
⇒
〈
Q̇
〉
= −4πκr2

(
T −

(
1 +

δ2

2

)
Tc

)
= −4πκr2Tc

(
r3

R3
f

− 1− R4
0δ

2
0

2r4

)

At equilibrium, we must have
〈
Q̇
〉
= 0. Thus, assuming that R′

f = Rf (1 + c):

(1 + c)3 − 1− R4
0δ

2
0

2R4
f (1 + c)4

≈ 3c− R4
0δ

2
0

2R4
f

= 0 ⇒ R′
f = Rf

(
1 +

R4
0δ

2
0

6R4
f

)

https://en.wikipedia.org/wiki/Adiabatic_invariant
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The fundamental reason why R′
f > Rf is that the rate of heat loss is a concave function under adiabatic

perturbations of r. Thus, the rate of heat loss under the fast, roughly adiabatic oscillations averages out to
less than it does with no oscillation, so the equilibrium radius is slightly larger.

Grading Scheme: 9.0 pts total.

• 3.0 pts for use of the adiabatic invariant or similar to derive δ(r).

• 1.0 pts for obtaining δ(r) ∝ 1/r2.

• 1.0 pts for finding an expression for the oscillating temperature using the adiabatic condition.

• 1.5 pts for substituting the oscillating radius and temperature into Q̇ and time-averaging

• 0.5 pts for setting ⟨Q̇⟩ = 0 at equilibrium.

• 1.0 pts for a correct final answer.

• 1.0 pts for mentioning the concavity of Q̇ as the cause of the discrepancy between Rf and R′
f , or 0.5

points for only mentioning nonlinearity.

(e) Now, we must consider the change in energy of the oscillations in addition to the change in H. Thus:

Ḣ + Ė = Ḣ +
dE

dr
ṙ =

〈
Q̇
〉

Note that we do not time-average Ḣ because it is a state variable (when the system crosses through

equilibrium, H is uniquely determined by r). Then, using E = 10πPcr
3δ2 = 10πPc

R4
0δ

2
0

r
:

10πPcr
2ṙ − 10πPc

R4
0δ

2
0

r2
ṙ = −4πκr2Tc

(
r3

R3
f

− 1− R4
0δ

2
0

2r4

)

⇒ ṙ = − 8πκ

15Nk

(
r3 −R3

f

(
1 +

R4
0δ

2
0

2r4

))/(
1− R4

0δ
2
0

r4

)
≈ − 8πκ

15Nk

r3 −R′3
f

1− δ20

Here, we take
R4

0

r4
≈ 1 because we don’t care about the cross term between δ0 and α′. Thus, we have:

τ ′ =
15Nk(1− δ20)

8πκ

∫ (R0+R′
f )/2

R0

1

r3 −R′3
f

dr ≈ 5 ln(2)Nk

8πκR′2
f

(
1− α′

2 ln(2)

)
(1− δ20)

Using R′
f ≈ Rf

(
1 +

δ20
6

)
, we find τ ′ =

5 ln(2)Nk

8πκR2
f

(
1− α′

2 ln(2)

)(
1− 4δ20

3

)
.

Grading Scheme: 5.0 pts total.

• 1.0 pts for substituting the time-averaged Q̇ into the differential equation; 0.5 pts if time-averaging Ḣ
or CpṪ as well.

• 2.0 pts for realizing that the energy of the oscillations changes and adding this term into the differential
equation.

• 1.0 pts for obtaining a differential equation analogous to the equation given for part (c), with the
substitution of R′

f for Rf , and using the same techniques to obtain τ ′.

• 1.0 pts for a correct final answer, or 0.5 pts for a final answer with the right correction for δ0.
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3 Stellar Shaping

In this problem, we investigate the formation of stellar systems.

3.1

Consider a cloud of dust of radius R of mass M with particles of mass m, all held at a constant temperature
T . Assume that kT ≫ GMm/R; i.e. the particles are far enough apart such that gravitational interactions
are nearly negligible.

(a) What is the expected value and variance of the angular momentum of one particle in the x̂ direction?

(b) What is variance in the total angular momentum of the cloud,
〈
L2
〉
?

3.2

Suppose some density fluctuations occur, which leads this cloud of gas into gravitational collapse. Now, we
must take gravitational interaction into account; assume that the cloud remains at thermal equilibrium and
that the total energy of the cloud remains constant–the work done by the exterior gas is small.

(c) Assume that the cloud remains spherically symmetric. Find the approximate distribution of densities
ρ(r). You can use the new equilibrium temperature in your expression, which will be calculated in part (f).
The model you find should work under the limit

r2 ≫ kbT/Gm.

(d) What is the new radius of the cloud, R′?

(e) Find the angular velocity ω of the cloud, assuming that the cloud rotates uniformly. Take the total
angular momentum of the cloud to be

√
⟨L2⟩ ẑ, which you found in part (b).

(f) What is the new temperature of the cloud, T ′?

3.3

The nebula is not at its most stable state because of the high angular velocity. Suppose that the part of the
cloud that reaches beyond a critical density limit ρc collapses and begins forming a star.

(g) Find the initial radius of collapse, Rc, and the mass of the star Ms. Assume the radius of the star is a lot
smaller than Rc.

For the last two parts, we will assume that the gravitational potential is quadratic, U = 1
2k(x

2 + y2 + z2),
and the angular velocity of the particles is ω. Leave answers in terms of the variables given in this part.

(h) Suppose all the leftover material, some N particles at temperature T ′, begins to settle into a gas. What
is the expected value for r2, the distance of these particles to the axis of rotation, once they reach their most
stable state?

(i) What is the approximate variance in the orbital inclination for this leftover material–that eventually
begins to form asteroids and planets? (to first order in ω2)
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Stellar Shaping – Solution

Total: 35.0 pts

(a) The expected value for the angular momentum in one dimension is 0 by symmetry.

l2x = m2(yvz − zvy)
2 = m2(y2v2z − 2yzvzvy + z2v2y)

Knowing that position and velocity are independent quantities, we take the expected value of this equation,
obtaining 〈

l2x
〉
= m2(

〈
y2
〉 〈
v2z
〉
− 2 ⟨yzvzvy⟩+

〈
z2
〉 〈
v2y
〉
) = m2(2

〈
x2
〉 〈
v2x
〉
)

where we used the fact that the dimensions are symmetric, so the first and third term are equal and the
second term is zero by symmetry. Now,

〈
x2
〉
=
〈
r2
〉
/3 =

∫ R
0 r2 · 4πr2 dr

4πR3
=

1

5
R2

By the equipartition theorem and/or using the Boltzmann Distribution,〈
v2x
〉
= kbT/m.

So then, the variance is m2(2(15R
2)(kbT/m)) =

2

5
mkTR2 .

There are many ways to solve this–averaging angles, using cylindrical shells, finding the total angular
momentum and using symmetry–all of these return the same answer and are equally valid.

Grading Scheme: 4.0 pts total.

• 0.5 pts for recognizing the expected value is 0 by symmetry.

• 0.5 pts for using the equipartition theorem in some way.

• 0.5 pts for realizing position and velocity are independent.

• 2.5 pts for getting the correct expression for the variance.

(b) In total, there are M/m particles. Then, by the central limit theorem, the total angular momentum of
the cloud has a Gaussian distribution with variance in one dimension〈

L2
x

〉
=
M

m

〈
l2x
〉
=
M

m

2

5
mkTR2.

Then 〈
L2
〉
= 3

〈
L2
x

〉
=

6

5
MkbTR

2 .

Grading Scheme: 2.0 pts total.

• 0.5 pts for using some form of the central limit theorem.

• 0.5 pts for using symmetry to find L2. 4

• 1 pt for correct answer.
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(c) Let T ′ be the new temperature of the cloud after it reaches thermal equilibrium, which will be calculated
in part(f). We can use hydro-static equilibrium:

dP

dr
= −ρ(r)g = −ρ(r)GM(r)

r2

with
P (r) = ρ(r)kT ′/m

and

M(r) =

∫ r

0
4πr2ρ(r) dr

This reduces to
d

dr
(
r2

ρ

dρ

dr
) = −4πGm

kbT ′ r
2ρ.

Since there are only powers in r in this differential equation, we infer a power-law relationship, ρ = arn.
Plugging this back, we get

d

dr
(
r2

arn
d(arn)

dr
) = −4πGm

kbT ′ r
2(arn)

d

dr
(nr) = −4πGm

kbT ′ ar
n+2

n = −4πGm

kbT ′ ar
n+2.

This results in a solution only when n = −2, which makes a = kbT
2πGm . So, then our distribution of densities

should be

ρ(r) =
kbT

′

2πGmr2
.

However, this solution is nonphysical. For a spherically symmetric distribution we expect the density to be
finite and that dρ

dr = 0 at the center. However, if we consider a small perturbation to our initial function,

ρ(r) ≈ kbT
′

2πGm(r2 + δ2)

both these conditions are satisfied. However, this modified function now doesn’t solve our differential
equations. But in the limit

r2 ≫ δ2

this is true, thus for all subsequent calculations we can use our aforementioned solution.

In differential equations lingo, this is called the singular solution to the differential equation. Normally when
solving a second-order differential equation, we would have 2 parameters to vary in order to match initial
conditions. However, all solutions eventually approach this in the limit of r. The other solutions to these
system of differential equations are non-analytic; see Emden–Chandrasekhar Equation for more information
regarding this. Below is a numerical solution I performed in Python to solve the differential equation.

The solutions to these equations are used to model the core of a star, as only the isothermal assumption
remains valid in that region of the star. Beyond this region, that assumption must be broken as otherwise,
there would be infinite mass, requiring us to bound the mass of the star in part (d).

Grading Scheme: 7.0 pts total.

• 2 pts for using Boltzmann Distribution, Hydro-static Equilibrium, Poission Equations or any physical
equivalent.

• 2 pts for correct differential equation (in any equivalent form).

https://en.wikipedia.org/wiki/Emden%E2%80%93Chandrasekhar_equation


August 30 - September 1 Online Physics Olympiad 2024 - Invitational Round

• 1 pt for guessing a power-law solution.

• 1 pt mentioning any physical breakdowns (boundary conditions at r = 0) and/or the significance of
the limit.

• 1 pt for correct answer.

(d) As aforementioned, we have to use the radius to bound the total mass M of the cloud. Integrating our
expression for density, we get

M(r) =
2kbT

′

Gm
r.

Then M(R′) =M so

R′ =
GMm

2kbT ′ .

Grading Scheme: 3.0 pts total.

• 1 pt for recognizing that the radius must be chosen to bound the total mass M .

• 1 pt for integrating the density distribution to find M(r).

• 1 pt for correct answer.

(e) Let’s first find the moment of inertia of the ball. Using the new mass distribution, we integrate along
spherical shells that have moment of inertia 2

3r
2 dM .

I =

∫ M

0

2

3
r2dM =

∫ R′

0

2

3
r2
(
M

R′ dr

)
=

2

9
MR′2 =

G2M3m2

18k2bT
′2

Then the angular velocity of the cloud would be

ω = L/I =

√
6
5MkbTR2

2
9MR′2 .

The answer can be simplified further but points will be awarded to this step.

Grading Scheme: 4.0 pts total.

• 1 pt for using integration to find the moment of inertia.

• 1 pt for using conservation of angular momentum.

• 2 pt for correct answer. If initial angular momentum is incorrect, -0.5.

(f) First, let’s find the gravitational potential energy. In part (a) we assume that before it collapses it is
negligible. Now, however, it is not. We calculate the GPE by imagining the work required to move concentric
shells of radius r and mass dM .

Eg = −
∫ M

0

GM(r)

r
dM = −GM2/R′ = −2

M

m
kbT

′ = −2NkbT
′

3

2
NkbT =

3

2
NkbT

′ − 2NkbT
′ +

L2

2I

= −1

2
NkbT

′ +
L2(9k2bT

′2)

G2M3m2
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This is a quadratic in terms of T ′, which can be solved using the quadratic formula.

T ′ =
G2M3m2Nkb

36k2bL
2

(
T +

√
T 2 +

216kbL2

G2M3m2N

)

We take the correct sign for the root looking at the limiting case when the rotational kinetic energy is
negligble compared to the gravitational potential.

Grading Scheme: 5.0 pts total.

• 1 pt for using integration to find the GPE

• 1 pt for using conservation of energy.

• 1 pt for correct algebraic equation.

• 2 pt for correct answer. If initial angular momentum is incorrect, -0.5.

(g) We find the critical radius Rc of the cloud by solving for Rc in the density distribution.

ρc =
kbT

′

2πGmR2
c

Rc =

√
kbT ′

2πGρc
.

Mc =MRc/R
′ =M

√
kbT ′

2πGmρc
· 2kbT

′

Gm

Grading Scheme: 1.0 pt total.

• 0.5 for correct setup.

• 0.5 for correct calculation for mass.

(h) The potential can be written as

−1

2
mω2r2 +

1

2
k(r2 + z2)

where r is the distance to the axis of symmetry. We can write the Boltzmann distribution

e(
1
2
mω2− 1

2
k)r2e−

1
2
kz2 .

We recognize from the energy equation that the equipotnential surfaces are squished spheres/elipsoids with
varying levels of r with differential volume ∝ r2 dr. This is because the differential volumes are taken between
two squished spheres as the radius is the parameter–meaning that the thickness of the differential volume is
different based on the height–so it isn’t just proportional to the surface area of an elipsoid. We also notice
that

〈
r2
〉
for these surfaces should be the same as if they were not squished–full spheres, because of this

reason. Thus
〈
r2
〉
= 2

3r
2. Now we can integrate on these surfaces these to get expected value of r2 of the

entire gas. I’ll let α = 1
2k −

1
2mω

2 and β = 1
kbT

for written simplicity.

〈
r2
〉
=

2

3

∫ ∞

0
r4e−βαr2 dr

/∫ ∞

0
r2e−βαr2 dr =

2

3
(

3

8α2β2
)/(

1

4αβ
) =

1

αβ
=

2kbT

k −mω2

We see that this makes sense by considering the case where ω2 tends to k/m, The expected value for r2

tends to infinity.
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As this part was written somewhat hastily, the second part to this was not added. The particles initially
start off with some angular velocity and should stabilize to conserve angular momentum. Here, it would be
L =M 2

9R
′2ω0 =Mω 2kbT

k−mω2 and ω would be found from there as the solution to a quadratic, assuming the

star’s radius and therefore mass is small. From there,
〈
r2
〉
could be calculated by plugging back ω in, and

finding the new temperature by conserving energy, similarly to the second part. However, as this was not
fully clarified, points were awarded for this solution.

Because it wasn’t specified whether the potential was per unit mass or not, points were also given to solutions
that treated U as per unit mass.

Grading Scheme: 4.0 pt total.

• 2 pt for finding the correct boltzman distribution.

• 1 pt for using symmetry/equipotential surfaces.

• 1 pt for correct answer.

(i) This equation asks to find the variance in the inclination. First, by symmetry, we know that the expected
value of the inclination is 0. Let’s call the ratio ϵ = b/a =

√
1− m

k ω
2 of the major and minor axis of the

eliptical equipotential surfaces. We know choosing a specific r value doesn’t change the expected value for
the variance of the inclination, as it just scales the elipsoid up and down. Thus, we can focus on the fraction
of volume a certain dθ takes up with respect to the entire volume. Suppose we take the ellipsoid to have
semi-major axis a = 1 without loss of generality. At an inclination of θ, we have

r2(cos2 θ + sin2 θ/ϵ2) = 1

from the equation of an ellipse.

Then the fraction of volume taken up by dθ is a cone with volume

dV ∝ r3 cos(θ) dθ

Then the variance in θ is

〈
θ2
〉
(ϵ) =

∫ π/2

−π/2
θ2r3 cos(θ) dθ

/∫ π/2

−π/2
r3 cos(θ) dθ =

1

2ϵ

∫ π/2

−π/2
θ2r3 cos(θ) dθ

The first integral isn’t analytically solvable, so we look for an approximation around ϵ = 1. Evaluating the
integral yields the variance of a cos(θ) distribution, which is known. This is equal to π2−8

4 . Taking the
derivative at ϵ = 1 is equal to

〈
θ2
〉′
(1) =

1

2

∫ π/2

−π/2
θ23r2(

dr

dϵ
) cos(θ) dθ − π2 − 8

4ϵ2

∣∣∣
ϵ=1

=
3

2

∫ π/2

−π/2
θ2 sin2(θ) cos(θ) dθ − π2 − 8

4

using
dr

dϵ
(1) =

2ϵ(ϵ2 cos2 θ + sin2 θ)− ϵ2(2ϵ cos2 θ)

2r(ϵ2 cos2 θ + sin2 θ)
=

2− 2 cos2(θ)

2
= sin2(θ).

Evaluating the integral leads to
π2

4
− 14

9
− π2 − 8

4
= 2− 9

14
=

5

14

this means we can write the variance to first order as:
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〈
θ2
〉
≈ π2 − 8

4
+

5

14
(ϵ− 1) =

π2 − 8

4
+

5

14

(√
1− m

k
ω2 − 1

)
≈ π2 − 8

4
− 5mω2

28k

As we expect, the variance decreases as we increase ω. This approximation breaks down for large values of
ω2 k

m , which we expect the variance to be around 0.

Because it wasn’t specified whether the potential was per unit mass or not, points were given to solutions
that treated U as per unit mass. Since the first order wasn’t explicitly specified, we gave points to attempted
solutions that were close to the actual value.

Grading Scheme: 5.0 pt total.

• 2 pt for the correct integral/setup for variance in inclination. (-0.5 for sign and algebraic errors)

• 1 pt for obtaining the variance for ω2 ≪ m/k in 0th order.

• 1 pt for using an approximation.

• 1 pt for correct expression.
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4 Hot Solids

In this problem, we investigate a one-dimensional model of atoms in a solid. Assume the atoms are point
masses of mass m connected by springs with spring constant κ and rest length a, and the total rest length of
the chain is L.

4.1

First, assume that the mass is spread continuously throughout the chain (in other words, a is very small).
Here, longitudinal waves have the same speed for all values of the angular frequency ω and wavenumber k.

(a) Find this speed of sound in the solid, v, up to a dimensionless constant.

Now, we get rid of this assumption and solve fully.

(b) Find a dispersion relation (a relationship between ω and k) for the chain of atoms if a is not required to
be small. Use this result to find the dimensionless constant from part (a).

4.2

We can use the above results to find the heat capacity of the chain. To do so, treat each possible frequency
ω as its own quantum harmonic oscillator (QHO) with a particle of mass m moving in a potential defined by
V (x) = 1

2mω
2x2. Each of these harmonic oscillators is at thermal equilibrium, and the total energy of the

chain is the sum of the contributions from each frequency. You may find the following integrals useful:∫ ∞

0

x

ex − 1
dx =

π2

6
,

∫ ∞

0

x3

ex − 1
dx =

π4

15

(c) First, derive the energy levels of a quantum harmonic oscillator by using the WKB approximation:∮
p(x) dx = 2πℏ(n+ 1/2) (1)

Here, p(x) is the momentum of the particle as a function of position and the integral is across one classical
period.

(d) Using the model from part (a), derive the total energy and heat capacity as a function of the temperature
T . (Your result only needs to hold for βℏωavg ≫ 1, with β = 1/kBT .) Assume that the atoms at either end
of the chain must remain fixed in place.

(e) Using the dispersion relation from part (b), find the energy and heat capacity to the next order in T .

(f) Above we assumed βℏωavg ≫ 1. Why do our results fail for high T?

4.3

When the mass-energy of a particle is small compared to its energy level, relativistic corrections are required.
The relativistic energy levels of a particle in a harmonic oscillator potential are given by:

En = mc2

(
−1 +

√
1 +

2ℏω
mc2

(
n+

1

2

))
(2)

(g) Use the given energy levels to find the total energy and heat capacity of the chain where each particle
is moving relativistically; you may assume that the dispersion relation is linear as in part (d). Give your
answer to the lowest order in ℏω/mc2.
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Hot Solids – Solution

(a) By dimensional analysis,

v ∼ a

√
κ

m
(3)

(b) Let the displacement of the nth mass be ψn. Then

mψ̈n = κ((ψn+1 − ψn)− (ψn − ψn−1)) (4)

=⇒ mψ̈n = κ(ψn+1 + psin−1 − 2ψn) (5)

We guess that the solution has the form ψ(x, t) = A exp(i(ωt− kx)) with x being the equilibrium positions
of the masses. Then

−mω2Aei(ωt−kx) = κAeiωt(e−ik(xn+a) + e−ik(Xn−a) − 2eikxn) (6)

=⇒ mω2 = 2κ[1− cos(ka)] (7)

=⇒ ω = 2

√
κ

m

∣∣∣∣sin(ka2
)∣∣∣∣ (8)

In the limit of small a, we get that the dimensionless constant from (a) is 1.
(c)

2

∫ L

−L
mω
√
L2 − x2dx = 2πℏ(n+ 1/2) (9)

=⇒ πL2mω = 2πℏ(n+ 1/2) (10)

=⇒ E =
1

2
mω2L2 = ℏω(n+ 1/2) (11)

(d) Each sound mode with wavenumber k has energy in the associated modes with frequency ω. To
derive the energy in a mode with frequency ω, we first find the partition function for the harmonic oscillator:

Z =

∞∑
n=0

exp(−βℏω(n+ 1/2)) =
exp

(
−1

2βℏω
)

1− exp(−βℏω)
(12)

The total energy is given by −∂β lnZ, which gives

Eω =
ℏω

exp(βℏω)− 1
(13)

The total energy, with ω(k) = ak
√

κ
m

E =
∑

Eω (14)

=⇒ =
L

π

∫ ∞

0
dk

ℏω(k)
exp(βℏω(k))− 1

(15)

=⇒ =
L

π

∫ ∞

0
dω

1

a

√
m

κ

ℏω
exp(βℏω)− 1

(16)

=⇒ =
L

πaβ2ℏ

√
m

κ

∫ ∞

0

x

ex − 1
dx (17)

=⇒ =
πL

6aβ2ℏ

√
m

κ
=
πLk2BT

2

6aℏ

√
m

κ
(18)

Where we replace the sum with an integral, ∑
−→ L

π

∫
(19)

This is because the two ends are fixed, so we know that nλ = 2L for a mode of wavelength λ. Since λ = 2π/k,
we have that k = nπ/L and therefore the spacing between k values is π/L. An integral is approximated
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as this spacing times the value of the function for each k value, so we can make the replacement as above.
Finally, we compute

CV =
πLk2BT

3aℏ

√
m

κ
(20)

(e) Let v0 = a
√

κ
m . Then

ω =
2v0
a

sin

(
ka

2

)
(21)

=⇒ arcsin

(
aω

2v0

)
=
ka

2
(22)

=⇒ k ≈ a

v0

(
1 +

a2ω2

24v20

)
(23)

=⇒ dk =
dω

v0

(
1 +

ω2a2

8v20

)
(24)

As above, we sum up Eω as an integral:

E =
L

πv0

∫ ∞

0
dω

ℏω
(
1 + ω2a2

8v20

)
eβℏω − 1

(25)

=⇒ E =
πL

6aβ2ℏ

√
m

κ
+

L

πv0

∫ ∞

0
dω

ℏω3a2

8v20

eβℏω − 1
(26)

=⇒ E =
πL

6aβ2ℏ

√
m

κ
+

La2

8πβ4v30ℏ3

∫ ∞

0

x3

ex − 1
dx (27)

=⇒ E =
πL

6aβ2ℏ

√
m

κ

(
1 +

π2m

20β2ℏ2κ

)
(28)

=⇒ E =
πLk2BT

2

6aℏ

√
m

κ

(
1 +

π2mk2BT
2

20ℏ2κ

)
(29)

And finally, we get CV = ∂βE:

CV =
πLk2BT

3aℏ

√
m

κ

(
1 +

π2mk2BT
2

10ℏ2κ

)
(30)

(f) Our integral bounds go to infinity, but there are a finite number of of states. This is important at
high temperatures, but for low temperatures the occupation of higher states is so low that we can make this
approximation.
(g) Credit to SSHS for their awesome solution to this part! It was better than the current official solution
so we present their approach here.
We find the partition function using energy values to first order in the relativistic correction:

Z ≈
∞∑
n=0

exp

(
−βℏω

(
n+

1

2

)
+
βℏ2ω2

2mc2

(
n+

1

2

)2
)

(31)

≈
∞∑
n=0

exp

(
−βℏω

(
n+

1

2

))(
1 +

βℏ2ω2

2mc2

(
n+

1

2

)2
)

(32)

=

(
1 +

β

2mc2
∂2

∂β2

) ∞∑
n=0

exp

(
−βℏω

(
n+

1

2

))
(33)

Since we know that the right sum is the partition function for the classical case as above, we can go ahead
and compute

Z =
e

1
2
βℏω

eβℏω − 1
+

ℏ2ω2

8mc2
βe

1
2
βℏω(6eβℏω + e2βℏω + 1)

(eβℏω − 1)3
(34)
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So

Eω = − ∂

∂β
lnZ (35)

= − ∂

∂β
ln

[(
e

1
2
βℏω

eβℏω − 1

)(
1 +

ℏ2ω2

8mc2
β(6eβℏω + e2βℏω + 1)

(eβℏω − 1)2

)]
(36)

= − ∂

∂β

[
ln

(
e

1
2
βℏω

eβℏω − 1

)
+ ln

(
1 +

ℏ2ω2

8mc2
β(6eβℏω + e2βℏω + 1)

(eβℏω − 1)2

)]
(37)

≈ − ∂

∂β

[
ln

(
e

1
2
βℏω

eβℏω − 1

)
+

ℏ2ω2

8mc2
β(6eβℏω + e2βℏω + 1)

(eβℏω − 1)2

]
(38)

=
ℏω
2

+
ℏω

eβℏω − 1
+

ℏ2ω2

8mc2

[
16βℏω

(eβℏω − 1)3
+

8(βℏω − 1)

eβℏω − 1
+

8(3βℏω − 1)

(eβℏω − 1)2
− 1

]
(39)

Now, we integrate to find the total energy (dropping the zero point energy, of course):

E =
∑

Eω (40)

=
πL

6aβ2ℏ

√
m

κ
(41)

+
ℏ2L

8πmc2a

√
m

κ

∫
dω ω2

[
16βℏω

(eβℏω − 1)3
+

8(βℏω − 1)

eβℏω − 1
+

8(3βℏω − 1)

(eβℏω − 1)2
− 1

]
(42)

=
πL

6aβ2ℏ

√
m

κ
(43)

+
L

πmc2β3aℏ

√
m

κ

[
2

∫ ∞

0
dx

x3

ex − 1
+

∫ ∞

0
dx

x3

ex − 1
−
∫ ∞

0
dx

x2

ex − 1
(44)

+ 3

∫ ∞

0
dx

x3

(ex − 1)2
−
∫ ∞

0
dx

x2

(ex − 1)2

]
(45)

=
πL

6aβ2ℏ

√
m

κ
+

L

πmc2β3aℏ

√
m

κ
[π2 − 2ζ(3)− 0.88574] (46)

Which, finally, gives us

CV =
Lπk2BT

3ℏa

√
m

κ

[
1 +

9kBT

π2mc2
(π2 − 2ζ(3)− 0.88574)

]
(47)

There are more ways to do this that give slightly different results due to the approximations made. Some
ways are replacing the sum in the partition function with an integral or computing the total energy directly
as an integral (without finding the partition function first and taking a derivative).
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