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T1: Booster

Solution 1:
All point values should be multiplied by 3 (for a total of 30 points)

(a) (i) The shape of the chamber after time t is a circle with radius r0 + vt. Thus the volume

burned is V = π(r0 + vt)2l − πr20l, and Ṁ = V̇ ρs = 2πρslv(r0 + vt)

(ii) The volume of fuel that is burned after some time (t ≤ r0/v) looks like this:

The total area of the semicircular endcaps is 2πv2t2, and the area of the remaining cross-like
figure is 4r20 − 4(r0 − vt)2. So the total area is A = 2πv2t2 + 4r20 − 4(r0 − vt)2. The mass

flow rate is Ṁ = lρsȦ = 4lρs((π − 2)v2t+ 2r0v) .

The intent of the problem was for t ≤ r0/v, but that wasn’t clearly specified.
For fairness to everyone who spent time on it, we solve the t > r0/v case-
https://www.overleaf.com/project/64cc0b0dcfb587f85f42416c below.
This case looks like the following:

In the figure, by Law of Sines, θ = arcsin r0√
2vt

. Then α = π − 2(π/4 − arcsin r0√
2vt

) =

π/2 + 2 arcsin r0√
2vt

.

The total area of the circular sectors (colored green) is 2(vt)2(π2 + 2arcsin r0√
2vt

). The total

area of the triangles (colored red) is 4vtr0 sin
(
π/4− arcsin r0√

2vt

)
= 4vtr0(

1√
2

√
1− r20

2v2t2
−
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r0
2vt) = 4vtr0(

1√
2

√
1− r20

2v2t2
− r0

2vt). The area inside the square is constant, so differentiation

will get rid of it.
We want:

Ṁ = ρsl
d

dt

[
2(vt)2(

π

2
+ 2 arcsin

r0√
2vt

) + 4vtr0(
1√
2

√
1− r20

2v2t2
− r0

2vt
)

]
= ρsl(4v

2t(π/2 + 2 arcsin
r0√
2vt

)− 4v2t2
r0

vt2
√
2− r20

v2t2

+ 4vr0(

√
2− r20

v2t2
− r0

2vt
) + 4vtr0(

r20

2v2t3
√

2− r20
v2t2

+
r0
2vt2

))

Grading Scheme

• 1 pts for correct answer for (i)

• 2 pts for correct answer for t < r0/v for (ii). 1 pt should be given if only a small mistake
(e.g. neglecting the endcaps) was made in the figure.

• 1 pt for something resembling the correct answer for t > r0/v for (ii)

(b) The gas is produced at a (volumetric) rate of 2π ρsρg lv(r0 + vt), and the area of the opening is

π(r0 + vt)2, so the velocity is

vg = 2
ρs
ρg

lv

r0 + vt

Multiplying by the mass flow rate gives

F = 4π
ρs
ρg
ρsl

2v2

Which is time-independent.
Grading Scheme

• 2 pts for correct final answer.

(c) The assumption is false. If the pressure and temperature stay constant, then by conservation of
energy, the velocity of the exhaust gasses will be constant. Thus the thrust will be proportional
to area and not constant in time, which contradicts part (b).
Grading Scheme

• 1 pts for stating the assumption is false and a valid explanation.

(d) The speed of sound is v =
√

3RT
M as only 3 of the degrees of freedom are translational (the

constant doesn’t actually matter that much). We can use this as an estimate for the speed of

the exhaust. Thus the gas is expelled at a volumetric rate of V̇ = π(r0 + vt)
2
√

3RT
M . The density

of the gas is MP
RT , so the rate of mass expulsion is Ṁ = π(r0 + vt)2P

√
3M
RT .

This should equal the result from (a) i, yielding P ≈ ρs

√
4RT

3M

lv

r0 + vt
Grading Scheme

• 1 pt for any dimensionally correct final answer.

• +2 pts for a final answer of the correct form (not considering the constant factor).
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T2: The Complex Potential

Solution 2:

Part A

Has hinted in the problem, we define differentiability of complex functions just as we would in single
variable calculus on the reals. A function f : C → C, is complex-differentiable or holomorphic at a
point z0 ∈ C if the following limit converges to a number f ′(z0) ∈ C:

lim
h→0

f(z0 + h)− f(z0)

h
= f ′(z0) (1)

We call the number f ′(z0) the derivative of f at z0. Note that the limit h→ 0 is taken by any sequence
of points in the complex plane that converges to the origin. As in multivariable calculus on R2, h can
approach the origin in two different ways: along the real axis and along the imaginary axis – both
limits should yield the same result if the limit in (1) indeed converges. If h moves along the real axis,
h = δx ∈ R. The limit in (1) becomes:

lim
δx→0

f(x0 + δx+ iy0)− f(x0 + iy0)

δx

where z0 = x0 + iy0. If we write f(x+ iy) = w(x, y) + iu(x, y), the limit then becomes:

lim
δx→0

[
w(x0 + δx, y0)− w(x0, y0)

δx
+ i

u(x0 + δx, y0)− u(x0, y0)

δx

]
but we see that these are just partial derivatives evaluated at z0:[

∂w

∂x
+ i

∂u

∂x

]
z0

Now, if we move along the imaginary axis, h = iδy ∈ iR. The limit in (1) becomes:

lim
δy→0

f(x0 + i(y0 + δy))− f(x0 + iy0)

iδy

Following a similar procedure from before:

lim
δy→0

[
w(x0, y0 + δy)− w(x0, y0)

iδy
+ i

u(x0, y0 + δy)− u(x0, y0)

iδy

]
Since 1

i = −i, the limit can be written as: [
∂u

∂y
− i

∂w

∂y

]
z0

As discussed, if f is complex-differentiable at z0, these limits should be equal. Equating real and
imaginary parts, we find:

∂u

∂x
= −∂w

∂y

∂w

∂x
=
∂u

∂y
(2)

Part B

From the conditions in (2), we observe that:

∇2w =
∂2w

∂x2
+
∂2w

∂y2

=
∂2u

∂x∂y
− ∂2u

∂y∂x
= 0

It can similarly be shown that ∇2u = 0. We therefore find that a holomorphic function has real and
imaginary parts that satisfy the 2D Laplace equation.
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Part C

The ‘tangent vectors’ along γ1 at t1 and γ2 at t2 are represented by the complex numbers γ′1(t1)
and γ′2(t2), respectively. Let us denote the ‘dot product’ of two complex numbers z and w as:
⟨z, w⟩ ≡ Re[z]Re[w] + Im[z]Im[w]. The cosine of the angle α is therefore:

cosα =
⟨γ′1(t1), γ′2(t2)⟩
∥γ′1(t1)∥∥γ′2(t2)∥

The transformed curves f(γ1(t)) and f(γ2(t)), at the intersection f(p), will have tangent vectors
w1 =

d
dtf(γ1(t))

∣∣
t1

and w2 =
d
dtf(γ2(t))

∣∣
t2
, respectively. Let us write γi(t) = xi(t) + yi(t) for i = 1, 2

and p̃ = (x1(t1), y1(t1)) = (x2(t2), y2(t2)) ∈ R2 . Using the chain rule,

Re[w1] =
∂w

∂x

∣∣∣∣
p̃

dx1
dt

∣∣∣∣
t1

+
∂w

∂y

∣∣∣∣
p̃

dy1
dt

∣∣∣∣
t1

Im[w1] =
∂u

∂x

∣∣∣∣
p̃

dx1
dt

∣∣∣∣
t1

+
∂u

∂y

∣∣∣∣
p̃

dy1
dt

∣∣∣∣
t1

And similarly for w2:

Re[w2] =
∂w

∂x

∣∣∣∣
p̃

dx2
dt

∣∣∣∣
t2

+
∂w

∂y

∣∣∣∣
p̃

dy2
dt

∣∣∣∣
t2

Im[w2] =
∂u

∂x

∣∣∣∣
p̃

dx2
dt

∣∣∣∣
t2

+
∂u

∂y

∣∣∣∣
p̃

dy2
dt

∣∣∣∣
t2

Now, let us consider the cosine of the angle formed between w1 and w2:

⟨w1, w2⟩
∥w1∥∥w2∥

Denoting the t derivatives with dots and omitting the input points/parameter values,

Re[w1]Re[w2] =

(
∂w

∂x

)2

ẋ1ẋ2 +
∂w

∂x

∂w

∂y
(ẋ2ẏ1 + ẏ2ẋ1) +

(
∂w

∂y

)2

ẏ1ẏ2

Im[w1]Im[w2] =

(
∂u

∂x

)2

ẋ1ẋ2 +
∂u

∂x

∂u

∂y
(ẋ2ẏ1 + ẏ2ẋ1) +

(
∂u

∂y

)2

ẏ1ẏ2

Hence,

⟨w1, w2⟩ =
∥∥∥∥∂f∂x

∥∥∥∥2 ẋ1ẋ2 + [∂u∂x ∂u∂y +
∂w

∂x

∂w

∂y

]
(ẋ2ẏ1 + ẏ2ẋ1) +

∥∥∥∥∂f∂y
∥∥∥∥2 ẏ1ẏ2

Note that since f is complex-differentiable, we require
∥∥∥∂f∂x∥∥∥2 =

∥∥∥∂f∂y∥∥∥2 = ∥f ′(p)∥2. Applying the

condition found in (a) to the second term, we find that it vanishes. Hence,

⟨w1, w2⟩ =
∥∥f ′(p)∥∥2 (ẋ1ẋ2 + ẏ1ẏ2) =

∥∥f ′(p)∥∥2 ⟨γ′1(t1), γ′2(t2)⟩
Now, observe that w1 = f ′(p)γ′1(t1) and w2 = f ′(p)γ′2(t2)

⟨w1, w2⟩
∥w1∥∥w2∥

=
⟨γ′1(t1), γ′2(t2)⟩
∥γ′1(t1)∥∥γ′2(t2)∥

As was to be shown.

Part D

Note that for a holomorphic complex potential f = ϕ+ iψ, taking the derivative in the real direction:

df

dz
=
∂ϕ

∂x
+ i

∂ψ

∂x

ψ was chosen such that ∂xψ = −∂yϕ = Ey so

df

dz
= −Ex + iEy
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Part E

There was a domain issue in the original problem statement – π should be added/subtracted depending
on the domain, but this shouldn’t matter in verifying the 2D Laplace equation since it involves
derivatives. A better statement would be ϕ(r, θ) = ϕ0

π θ for 0 ≤ θ ≤ π, which clearly satisfies the
given boundary conditions ϕ(x > 0, 0) = 0, ϕ(x < 0, 0) = ϕ0. In spherical coordinates, the Laplacian
operator is

∇2 =
1

r

∂

∂r

(
r
∂

∂r

)
+

1

r2
∂2

∂θ2
+

∂2

∂z2

Hence,
∇2ϕ(r, θ) = 0

By the uniqueness theorem, the true, unique electric field respecting the boundary conditions is
modeled by −∇ϕ.

Part F

A radial line on the upper half plane at angle θ ∈ (0, π) is the set of points Lθ = {reiθ ∈ H, r ∈ (0,∞)}.
Under the logarithm map, this set is mapped to log(Lθ) = {log |r|+ iθ, r ∈ (0,∞)} which is clearly the
horizontal line at Im[z] = θ extending −∞ < Re[z] <∞. Since the upper half plane can be thought
as the collection of the sets Lθ for θ ∈ (0, π), logH is clearly the strip bounded by Im[z] = 0 and
Im[z] = π. Let us call this strip S. We are given that log(z) is holomorphic on H and that ez : S → H

Part G

Note that the boundary condition in (e), under the logarithm map, becomes the desired boundary
conditions of two infinite capacitor plates. Let us crudely denote the ‘potential space’ as Φ – the space
to which complex potentials map. For example, if f is an appropriate complex potential to (e), we may
write f : H → Φ with the boundary condition ϕ(x > 0, 0) = 0 and ϕ(x < 0, 0) = ϕ0 defined on the
upper half plane H. We observe that taking a map f ◦ ez : S → H → Φ defines a complex potential
with the boundary conditions ϕ(x, 0) = 0 and ϕ(x, π) = ϕ0 defined on S. For an arbitrary separation
d, we can consider f(e

π
d
z). Since e

π
d
z and f are holomorphic, so is f(e

π
d
z) = ϕ(e

π
d
z) + iψ(e

π
d
z). As

verified in (b), this means that the real part, ϕ(e
π
d
z), satisfies the 2D Laplace equation, as well as the

boundary conditions ϕ(x, 0) = 0 and ϕ(x, d) = ϕ0, hence a valid potential for this problem. We have:

ϕc(x, y) = ϕ
(
e

π
d
r cos θ,

π

d
r sin θ

)
=
ϕ0
d
r sin θ =

ϕ0
d
y

for y ∈ (0, d). This is indeed the expected result from basic electrostatics.

Part H

This problem really isn’t approachable without rigorous mathematical reasoning. The unit disc is the
set defined by {z ∈ C, |z| < 1}. The upper half plane is defined by the set {z ∈ C, Im[z] ≥ 0}. We
first show that f(D) ⊆ H. For any ξ ∈ D, we observe that

Im

[
i
1− ξ

1 + ξ

]
= Re

[
1− ξ

1 + ξ

]
= Re

[
(1− ξ)(1 + ξ∗)

∥1 + ξ∥2

]
= Re

[
1 + ξ∗ − ξ − ∥ξ∥2

∥1 + ξ∥2

]
= Re

[
1− 2iIm[ξ]− ∥ξ∥2

∥1 + ξ∥2

]
=

1− ∥ξ∥2

∥1 + ξ∥2
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Clearly, if |ξ| < 1, we have

Im

[
i
1− ξ

1 + ξ

]
> 0

implying f(ξ) ∈ H. Since for an arbitrary f(ξ) ∈ f(D) we have f(ξ) ∈ H, f(D) ⊆ H. Now we’d like
to show that H ⊆ f(D). Consider an arbitrary ω ∈ H. We’d like to show that there exists a number
ξ ∈ D such that f(ξ) = ω, which would imply ω ∈ f(D). Observe that:

i
1− ξ

1 + ξ
= ω

i− iξ = ω + ωξ

i− ω = ξ(ω + i)

ξ =
i− ω

i+ ω

Now, note that Re[i− ω] = −Re[i+ ω] = Re[ω], so when comparing |i− ω| and |i+ ω|, we need only
compare the imaginary parts. Denoting ωi ≡ Im[ω] > 0,

| Im[i+ ω]| = |1 + ωi| ≥ |1− |ωi||

since ωi > 0, we can get rid of the absolute value symbol – |ωi| = ωi – and make the above a strict
inequality. This suggests that | Im[i−ω]| < | Im[i+ω]|, which implies |i−ω| < |i+ω|, and we conclude:

|ξ| =
∣∣∣∣ i− ω

i+ ω

∣∣∣∣ < 1

so for all ω ∈ H, there exists a ξ ∈ D with f(ξ) = ω. We’ve shown that f(D) ⊆ H and that f(H) ⊆ D,
implying f(D) = H. The way we found ξ above hints that the ω ∈ H, ξ ∈ D pair is defined uniquely –
that there is a one-to-one correspondence such that f is bijective. To show this, we can first suppose
that f has an inverse h defined by:

h(w) =
i− w

i+ w

h is clearly single-valued, and it’s easy to verify that h(f(z)) = z and f(h(w)) = w. This would
be a direct proof that f is a bijection between D and H. Now we observe the mapping of the
circle C = {|z| = 1}. Note that there should be problems with f around z = −1 ∈ C since f is
not holomorphic at z = −1. For an arbitrary point eiθ ∈ C with θ ∈ [0, 2π), it’s easy to simplify
expressions down to:

f(eiθ) =
sin θ

1 + cos θ

Graphing this on desmos suggests that the arc (0, π) maps to the positive real line and that (π, 2π)
maps to the negative real line. Notice there’s a jump from ∞ to −∞ as we move from the top arc to
the bottom arc at π – this is where f “breaks”.

Part I

This is a standard electrostatics problem. The potential ϕI in the region between the rod and the
cylindrical shell can be found by integrating the appropriate electric field E.

E(r) =
λ

2πϵ0r
r̂

ϕI(r) = − λ

2πϵ0
ln(r/R)

where R is the radius of the concentric cylindrical shell.
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Part J

From our results in (h), let us define a map g : DR → H, where DR is the disc of radius R centered at
the origin, as:

g(z) = ih
1− z/R

1 + z/R

Under this map, the set up in (i) is mapped to the boundary conditions on H: ϕ = 0 on the real
line, infinite rod placed at z = ih. These are the exact boundary conditions that we require for this
problem. The inverse map of g, denoted H, is given by:

H(w) = R
i− w/h

i+ w/h

H is holomorphic everywhere on the complex plane except at −ih, which isn’t included in H, so H
holomorphic on the upper half plane. Since the boundary condition satisfied by ϕI has the geometry
of DR, we can consider a complex potential f = ϕI + iψI that maps f : DR → Φ. As argued in (g),
f ◦H : H → DR → Φ is a holomorphic function on H that respects all necessary boundary conditions.
Since ϕI is only dependent on r, we’d like to consider |H(w)|:

∥H(ω)∥2 = R2 1−
2
h Im[w] + ∥w∥2

h2

1 + 2
h Im[w] + ∥w∥2

h2

If we identify Im[w] = y and ∥w∥2 = x2 + y2, the desired potential function is:

ϕ(x, y) =
λ

2πϵ0
ln

√√√√1 + 2
hy +

x2+y2

h2

1− 2
hy +

x2+y2

h2

A method of images results in the same expression.

Part K

If we parameterize the curve C as γ(t) = x(t) + iy(t), the length element dl at γ(t0) can be written as:

dl =

√(
dx

dt

)2

+

(
dy

dt

)2

dt = |γ′(t0)|dt

with all derivatives evaluated at t0. We can use the calculations in (c) to write dl′ in terms of dt:

dl′ =

∣∣∣∣∣ ddtf(γ(t))
∣∣∣∣
t0

∣∣∣∣∣ dt = |f ′(γ(t0))||γ′(t0)|dt

Hence, we find the scaling factor is |f ′(γ(t0))|.

Part L

If n̂ is orthogonal to dl, the surface charge at dl is proportional to ∇ϕ · n̂. Since the surface is a
conductor, ∇ϕ is parallel to n̂ near the surface. From previous problems, we know that ϕ′ = ϕ ◦ f−1

is the appropriate electrostatic potential in f(C), and ∇ϕ′ is parallel to the mapping of n̂, which
remains orthogonal to the curve, as shown in (c). There’s a theorem that states that if f is a bijective
holomorphic map, f ′ never vanishes, f−1 is holomorphic, and the derivative of f−1 is given by 1

f ′ .
However, since we deal with the individual real and imaginary components of complex functions in
this question, we may crudely rely on calculus on R2. The surface charge at dl′ is proportional to
∇ϕ′ · n̂′ = |∇ϕ′|. Carefully applying the chain rule results in:

|∇ϕ′| = |∇ϕ|
|f ′(z)|

https://math.stackexchange.com/questions/3827499/question-about-inverse-of-a-conformal-map-is-also-holomorphic-stein-and-shakarc
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Part M

If we take the charge at points to remain the same even after conformal transformations (think about
stretching charged surfaces with the charges glued in place) we see that the scale factor found in (j)
results in the scaling of the surface charge found in (l). Hence, given that functions behave nicely at
boundaries, we can determine the surface charge of other surfaces simply by looking at the form of f
and its derivative.

Part N

The electrostatic system of interested is effectively two-dimensional. For simplicity, set L = 1 and
Q = +1. We can recover the general answer with dimensional analysis later on.
Consider a configuration in z-space in which the grounded conductor fills the area Re(z) < 0 and a
charge is placed at position e+iπα/θ. This configuration can be mapped to our puzzle in w-space by
the conformal transformation w(z) = zθ/π as shown in the figure below.

In z-space, the electric potential in open space is as if created by the original charge and the image
charge −1 located at position e−iπα/θ. Thus, the complex potential is given by:

ϕ(z) =
[
−2k ln

(
z − e+iπα/θ

)]
−
[
−2k ln

(
z − e−iπα/θ

)]
= 2k ln

z − e−iπα/θ

z − e+iπα/θ
.

After the transformation z → w(z), in w-space it becomes ϕ(z) → ϕ′(w):

ϕ′(w) = ϕ(z)
∣∣∣
z→w

= 2k ln
w − e−iπα/θ

w − e+iπα/θ
.

Choose a polar coordinate w = (r, φ), then we can obtain the real potential as:

Re
[
ϕ′(r, φ)

]
= k ln

1 + r2π/θ − 2rπ/θ cos
[
π
θ (φ+ α)

]
1 + r2π/θ − 2rπ/θ cos

[
π
θ (φ− α)

] .
Subtract this by the electric potential created by the original charge in the w-space, we have a
regularized complex potential which is not singular at the location of that charge:

Re
[
ϕ′reg(r, φ)

]
= Re

{
ϕ′(r, φ)−

[
−2k ln

(
w − eiα

)] ∣∣∣
w=reiφ

}
= k ln

{
1 + r2π/θ − 2rπ/θ cos

[
π
θ (φ+ α)

]} [
1 + r2 − 2r cos (φ− α)

]
1 + r2π/θ − 2rπ/θ cos

[
π
θ (φ− α)

] .
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We can then calculate the electrical field created at the location of the original charge by the induced
charge distributed on the conducting wedge:

E⃗ = −
{
∂rRe

[
ϕ′reg(r, φ)

]
r̂ +

1

r
∂φRe

[
ϕ′reg(r, φ)

]
φ̂

} ∣∣∣∣∣
r=1,φ=α

= −k
[
r̂ +

π

θ
cot
(π
θ
α
)
φ̂
]
.

The total electrostatic force acting on the original charge is therefore F⃗ = E⃗, and after putting back
Q and L, we arrive at the expression:

F⃗ = −kQ
2

L

[
r̂ +

π

θ
cot
(π
θ
α
)
φ̂
]
.

For θ = 120o and α = 30o, the magnitude of this force in the unit of kQ2/L is
√
13/2 ≈ 1.8028.

* This part was created with helps from Quy C. Tran and Nam H. Nguyen.

Grading Scheme

(a) 1.5 pts
(b) 1.5 pts
(c) 5 pts
(d) 1.5 pts
(e) 1 pt
(f) 1.5 pts
(g) 7.5 pts
(h) 7.5 pts
(i) 1.5 pts
(j) 7.5 pts
(k) 5 pts
(l) 5 pts
(m) 1.5 pts
(n) 15 pts
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T3: General Relativity

Solution 3:

(a) By the multivariable chain rule, we can write the relationship between xi and qi as

dxi =
∂xi
∂q1

dq1 +
∂xi
∂q2

dq2 + · · ·+ ∂xn
∂qn

dxn =
n∑
j=1

∂xi
∂qj

dqj .

We know that in original coordinates, the infinitesimal line element can be written by the
Pythagorean theorem as

ds =
√

dx21 + dx22 + · · ·+ dx2n =⇒ ds2 =
n∑
i=1

dx2i

Hence, we can find that

ds2 =

n∑
i

(
∂x⃗

∂qi

)2

dqi.

This means that gi =
(
∂ψ−1

∂qi

)2
.

Grading Scheme

• (1 pt) Uses multivariable chain rule or equivalent to find infintesimal length dxi.

• (1 pt) Uses Pythagorean theorem to find formula for line element ds.

• (1 pt) Finds out that gi =
(
∂ψ−1

∂qi

)2
Notes

• We do not expect competitors to provide the most mathematically rigorous solution. A
solution with true rigor would be able to prove why ds2 takes the given form.

• Some competitors were able to provide a solution explaining this. See the solution by
|Enloe⟩ on our website.

(b) Let us take a look at the Minkowski metric:

ds2 = −c2dt2 + dx2 + dy2 + dz2.

Without loss of generalization, let us assume the rocket is moving only in the x-direction, meaning
that dy = dz = 0. We can draw a spacetime diagram as shown below for the twin moving in the
rocket:

d

ctf/2

ctf

ct

x

Note that dx = vdt where v is the constant velocity of the twin. Hence, we can rewrite as

ds2 = (v2 − c2)dt2.
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Since ds2 is invariant, we can say that the time experienced by the twin on the spaceship is τ .
As the other twin is not moving, then (and by noting that v changes sign at ctf/2)

−c2dτ2 = (v2 − c2)dt2 =⇒ ∆τ =

∫ tf

0

√
1− v2

c2
dt =⇒ τ =

tf
γ
.

Hence the twin on the spaceship ages less.

Grading Scheme

• (0.5 pts) Writes the relation dx = vdt.

• (1 pt) Uses invariance to find τ in terms of t. (-0.5 points if they do not acknowledge the
change in sign of v at ctf/2)

• (0.5 pts) Concludes that the spaceship twin ages less.

(c) We recall that the action of a system along a path q⃗(t) between two times t1 and t2 is given as

S =

∫ t2

t1

L(qi, q̇i, t)dt.

We are given that the line element ds2 = −(1 + 2Φ(x))dt2 + (1− 2Φ(x))dx2 (using units where
c = 1). We can write an expression for the maximal spacetime length as

ds =
√

−(1 + 2Φ(x))dt2 + (1− 2Φ(x))dx2

=

√
−(1 + 2Φ(x))

(
dt

dσ

)2

+ (1− 2Φ(x))

(
dx

dσ

)2

dσ

S =

∫
ds =

∫ √
−(1 + 2Φ(x)) + (1− 2Φ(x))ẋ2dσ

We notice that the expression inside the integral is the Lagrangian. Now we use the Euler-
Lagrange equation ∂L

∂x = d
dt

dL
dẋ using the approximation Φ(x) ≪ 1 and ẋ ≪ 1. Without much

detail on calculations, one can recover that ẍ = −Φ′(x). This resembles Newton’s second law
F = −mdΦ

dx .

Grading Scheme

• (2 pts) Is able to recover the Lagrangian. (-0.5 points if they write the integral with dt
instead of dσ.)

• (2 pts) Is able to recover Newton’s second law by using the Euler-Lagrange equations. (-1
point if significant progress is achieved, but the final answer is not correct. -0.5 points if
they don’t show how they used approximations)

(d) To get rid of special relativistic effects, we assume zero velocity, and hence ds2 = −(1+2Φ(x))dt2.
As the factor for time dilation is γ = σ/t, we can write using ds2 = −dσ2 that

dσ

dt
=
√
1 + 2Φ(x) ≈ 1 + Φ(x)

Grading Scheme

• (1 pt) Writes expression assuming ds2 for general relativistic effects.

• (1 pt) Finds expression for time dilation.

(e) We apply the radial geodesic. We note that d2r
dτ2

= dr
dτ = dθ

dτ = 0. Thus, we can add the geodesic
equations for Γrtt and Γrϕϕ, so that

Γrtt

(
dt

dτ

)2

+ Γrϕϕ

(
dϕ

dt

dt

dτ

)2

= 0
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(
dϕ

dt

)2

= − Γrtt
Γrϕϕ

= −
c2B dB

dr
2

−Br sin2 θ
=
c2 dBdr
2r

=
c2rs
2r3

=
GM

r3

Thus, (
r
dϕ

dt

)2

= c2 − 2GM

r
=
GM

r
,

which yields rp =
3GM
c2

.

Grading Scheme

• (2 pts) Recombines the radial geodesic equation to find a formula for dϕ
dt .

• (2 pts) Finds the radius to be rp =
3
2rs. (-1 pt if significant progress is achieved but the

final answer is not correct)

(f) Divide the Schwarzschild metric by the path parameter to obtain:

0 = −
(
1− rs

r

)
c2t2 +

ṙ2

1− rs
r

+ r2ϕ̇2

Where ds2 = 0 for null geodesics. From this, we can identify the following conserved quantities:

d

dσ

(
r2ϕ̇
)
⇒ L = r2ϕ̇ (angular momentum)

d

ds

((
1− rs

r

)
c2ṫ
)
⇒ E =

(
1− rs

r

)
c2ṫ (energy)

Here, b = L
E is the impact parameter. The Schwarzschild metric, for θ = π

2 , can be rewritten as:

0 = −
(
1− rs

r

)
c2dt2 +

dr2

1− rs
r

+ r2dϕ2

This leads to:

E2 =

(
dr

dϕ

)2

+
L2

r2

(
1− rs

r

)
(
dr

dt

)2

= −
(
1− rs

r

)
+
r4

b2

Differentiating with respect to ϕ and substituting 1/r shows:

d2

dϕ2

(
1

r

)
=
rp
r2

− 1

r

Considering a small perturbation r = rp ± δ leads to:

d2

dϕ2

(
1

r + δ

)
=

rp
(r + δ)2

− 1

r + δ

d2

dϕ2

(
1

r

(
1 +

δ

r

)−1
)

=
rp
r2

(
1 +

δ

r

)−2

− 1

r

(
1 +

δ

r

)
− 1

r2
d2δ

dϕ2
=

1

r

[(
1− 2

δ

r

)
−
(
1 +

δ

r

)]
Finally, we can retrieve a simple differential equation:

d2δ

dϕ2
= δ ⇒ δ = Aeϕ +Be−ϕ
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Given δ(0) = δ0 (e.g., δ = 0.25 m) and δ′(0) = rpβ (where β is an arbitrary constant representing
the angle), one can find A and B as

δ = δ0

(
eϕ + e−ϕ

2

)
+ rαp

(
eϕ − e−ϕ

2

)
= δ0 coshϕ+ rpβ sinhϕ

Thus, for the maximum case, we need δ(2π) = δ0. To find α, consider the symmetry and multiply
the result by 2. Therefore,

δ0 = δ0 cosh(2π) +
rpα

2
sinh(2π) =⇒ α =

2δ0(1− cosh(2π))

rp sinh(2π)

A drawing can be created on desmos.

Notice how the angle k must be extremely small for the effect to occur. In the above picture we
set k = 0.00000002 and yet, the photon trajectory misses by about 3000 meters when we require
the full deviation to be 0.25 m. Hence, it is extremely unlikely for one to be able to visualize
this effect in real life. Additionally, it is worth noticing how these curves take form of spirals.

Grading Scheme

• (2 pts) For recovering expressions for angular momentum and energy.

https://www.desmos.com/calculator/xzrxsjlvjr
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• (2 pts) For finding a differential equation in terms of rp, r, and ϕ.

• (4 pts) For simplifying the differential equation and using proper approximation to find an

expression for d2δ
dϕ2

.

• (2 pts) For solving the differential equation and interpreting the results.

• (1 pts) For creating a proper labelled diagram that represents the scenario.

(g) The Schwarzchild Metric is represented by:

(ds)2 =
(
cdt

√
1− 2GM

rc2

)2
−
( dr√

1− 2GM
rc2

)2
− (r dθ)2 − (r sin θdϕ)2

as we are only worried about the ϕ direction, dr = dθ = 0 and θ = π/2. Therefore, we have

c

√
1− 2GM

rc2
= r

dϕ

dt

To find the period, we need to calculate the angular speed of light in the ϕ-direction at 3GM
c2

.
Therefore,

dϕ

dt
=
c

r

√
1− 2GM

rc2
=

c3

3GM
√
3
.

Therefore, because angular speed is constant,

T =
2π
dϕ
dt

=
2π
c3

3GM
√
3

=
6πGM

√
3

c3

Grading Scheme

• (2 pts) For simplifying the Schwarzschild metric and finding a formula for dϕ
dt .

• (2 pts) Getting the right answer.

(h) Grading Scheme

• (4 pts) Solid explanation proving point.

(i) Grading Scheme

• (3 pts) Finds the radius of the shadow disc is 3
√
3

2 rs.

• If part (f) was not attempted, +2 points for recovering expressions for angular momentum
and energy.

• (3 pts) +1.5 Uses solid angle Ω to find portion of light shining on disc. + 1.5 Integrates
using number density to find total number of contributing photons. (-1 pt if correct answer
is not obtained.)


