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General Instructions

The experimental examination consists of 1 long answer question worth 25 points over 1 full day from
August 6, 0:01 am GMT.

• The team leader should submit their final solution document in this google form.

• If you wish to request a clarification, please use this form. To see all clarifications, view this document.

• Participants are given a google form where they are allowed to submit up-to 100 megabytes of data
for their solutions. It is recommended that participants write their solutions in LATEX. However,
handwritten solutions (or a combination of both) are accepted too. If participants have more than
one photo of a handwritten solution (jpg, png, etc), it is required to organize them in the correct
order in a pdf before submitting. If you wish a premade LATEX template, we have made one for you
here.

Specific Rules

For any part of this paper, you are allowed to use online tools and resources to help you, as long as you
are not requesting help from anyone outside of your team. Allowable resources include Wikipedia, research
papers, Wolfram Alpha, Python, Excel, etc.

However, you must document every resource that you use and cite them when applicable.
As a general rule of thumb, you should derive any results that cannot be found on Wikipedia. Therefore,
solutions along the lines of: “By Wolfram Alpha, this is true.” will not be accepted. Be reasonable please.

Every time you are asked to run an experiment, you must provide the input parameters and
a screenshot of the output.

Accessing the Program

To access the Python notebook, follow this link. You will be able to perform all the code online, without
downloading anything. If you cannot access the link, we will also provide the source code on our website.

Background Information

In this problem, you will be running a computer simulation written in Python to complete a series of
questions relating to the Lorenz system, a system of ordinary differential equations. While you do not need
to fully understand how exactly the code operates, it could be beneficial to grasp the process the code
follows.

The script employs a simple algorithm to simulate and illustrate the Lorenz system.

1. Define constants for the Lorenz system equations, define the system of equations as a function, and
establish the initial state. Set simulation parameters including time-step, maximum time, and the
number of steps.

2. Implement Fourth-order and Second-order Runge-Kutta methods as functions. These will be used for
solving the Lorenz system equations.

3. Run a loop for each time step where the system’s state is updated using the Fourth-order Runge-Kutta
method and stored in the state trajectory.

4. Plot the state trajectory of the Lorenz system in a 3D graph to visualize the system’s behavior over
time.

https://forms.gle/h7fbVUZajQo95fX48
https://forms.gle/J3bHzP3ZoYWPi6pE6
https://docs.google.com/document/d/1RcO054x037quyUTm8AiqSbsS_TUsRbSM1sxx0CSkLBM/edit?usp=sharing
https://www.overleaf.com/4684761968pvznrjtmzknn
https://colab.research.google.com/drive/1C9a72xrqR4oKryh-8XxWuBMq08sZUuK1?usp=sharing
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The Lorenz System

The Lorenz system is a system of ordinary differential equations (ODEs) that was first studied by Edward
Lorenz when investigating the physical properties of a convective fluid flow. It is notable for having chaotic
solutions for certain parameter values and initial conditions. In particular, the system shows sensitive
dependence on initial conditions, which is a key property of chaotic systems. In other words, trajectories
starting at slightly different initial conditions can end up at vastly different states. For more information,
see this video on the Butterfly effect by Veritasium.

The Lorenz system is defined as a coupled differential equation for the quantities (x, y, z) where x is propor-
tional to the rate of convection, y to the horizontal temperature variation, and z to the vertical temperature
variation:

ẋ = σ(y − x)

ẏ = x(ρ− z)− y

ż = xy − βz

where σ, ρ, and β are system parameters. The parameter σ is the Prandtl number, ρ is the Rayleigh number,
and β is a geometric factor related to the shape of the fluid layer. The dot represents a time derivative.

The Lorenz system exhibits a variety of behaviors as the parameters σ, ρ, and β vary, including fixed points,
limit cycles, and chaos. For certain parameter values, the system has chaotic solutions. The most famous
example of this is the case where σ = 10, ρ = 28, and β = 8/3. This set of parameter values gives rise to
the Lorenz attractor, a fractal structure that is the path traced by the system in the phase space.

To simulate the Lorenz system, we use a special technique of approximation for differential equations called
the Runge-Kutta methods. The basic idea is to compute the derivative at several points within a time step
and then combine these derivatives in a weighted average to estimate the state of the system at the next
time step. This approach provides a more accurate prediction than simply extrapolating the derivative at
the beginning of the time step, as done in the simpler first-order Euler method.

https://en.wikipedia.org/wiki/Lorenz_system
https://youtu.be/fDek6cYijxI
https://en.wikipedia.org/wiki/Prandtl_number
https://en.wikipedia.org/wiki/Rayleigh_number
https://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_methods
https://en.wikipedia.org/wiki/Euler_method
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For this problem, you do not have to write much code. We have written most of the needed functions. All
you have to do is paste them in the Google Colab.

• system(state, t): This function represents the Lorenz system. It takes in a state vector [x, y, z]
and a time t, and outputs the derivatives [ẋ, ẏ, ż].

• rk4 step(state, t, dt, system): This function implements the fourth-order Runge-Kutta (RK4)
method for numerical integration. It takes in a state vector [x, y, z], a time t, a time step dt, and a
system function. It outputs the state at time t+ dt.

• rk2 step(state, t, dt, system): Similar to rk4 step, this function implements the second-order
Runge-Kutta (RK2) method for numerical integration.

• get distance(state1, state2): This function takes in two state vectors and returns the Cartesian
distance between them.

Problem 1

What condition needs to be satisifed for σ, ρ, β in order for the ODE to be stable? (i.e. bounded orbits).
Where are the attractors located?

Problem 2

Suppose you change the parameter ρ slightly above its original value, and keep σ and β at their original
values. How does the system behavior change? In particular, how does the position of the attractors
change, and what happens to the system’s stability?

Now suppose you keep ρ at its original value, and change σ and β to values slightly different from their
original ones. Again, describe the changes in the system behavior, the position of the attractors, and
the system’s stability.

To analyze how chaotic a system is, we often use the Lypaunov exponent. Let’s consider two trajectories of
a dynamical system that start at slightly different initial conditions. We denote the state of the trajectory
at time t as r(t) = [x(t), y(t), z(t)], and the state of the second trajectory as r(t) + δr(t), where δ is a small
perturbation.

The distance between both trajectories can be represented as d(t) = ||δr(t)||. If the system is sensitive to
initial conditions, then over time, d(t) will grow or shrink at an exponential rate. Therefore, we can rewrite
as

d(t) ≈ d(0)eλt

where λ is the Lypaunov exponent. Here, we assume that d(0) is small enough so that an exponential
approximation can be taken. Then, by taking natural logarithms, we find that the Lypaunov exponent can
be written as

λ = lim
t→∞

1

t
ln

(
d(t)

d(0)

)
As r ∈ R3 for the Lorenz system, there will be 3 Lypaunov exponents {λ1, λ2, λ3} that characterize the
system in all 3 directions. We are typically most interested in the Maximum Lypaunov Exponent (MLE)
as that tells us a lot about the system itself.

• If the Lypaunov exponent is positive (λ > 0), the trajectories are diverging on average (as eλt ap-
proaches infinity) and the system is chaotic.

• If it is negative (λ < 0), the trajectories are converging on average (as e−λt approaches 0) and the
system is stable.

• If it is zero (λ = 0), the trajectories neither converge nor diverge on average (as e0 = 1), indicating a
neutral or marginally periodic stable system.

Below, we show a plot for an unrelated system and its behavior for corresponding MLE.

https://en.wikipedia.org/wiki/Lyapunov_exponent
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Problem 3

Compute the Maximal Lyapunov Exponent (MLE) for a Lorenz system of these parameters:

• σ = 15.6

• ρ = 35.4

• β = 3.13

What does this imply about the system? See if you can estimate uncertainties!

Problem 4

Call Tmax the maximal time for when a simulation is accurate to 99% of reality. A simulation is
characterized by the specific numerical solver and the time step dt.

Using rk4 step, estimate Tmax at various values of dt, given the initial point of (1,1,1). Make a plot.

Then do the same thing with rk2 step. What differences do you notice?

Problem 5

Let σ = 10, ρ = 28, β = 8/3. What is the average angular frequency ω0? Report with uncertainty. How
does this change with position?


