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Instructions for Theoretical Exam

The theoretical examination consists of 5 long answer questions and 110 points over 2 full days from July 30,
0:01 am GMT.

• The team leader should submit their final solution document in this google form. We
don’t anticipate a tie, but in the rare circumstance that there is one, the time you submit
will be used to break it.

• If you wish to request a clarification, please use this form. To see all clarifications, view this document.

• Participants are given a google form where they are allowed to submit up-to 1 gigabyte of data for their
solutions. It is recommended that participants write their solutions in LATEX. However, handwritten
solutions (or a combination of both) are accepted too. If participants have more than one photo of
a handwritten solution (jpg, png, etc), it is required to organize them in the correct order in a pdf

before submitting. If you wish a premade LATEX template, we have made one for you here.

• Since each question is a long answer response, participants will be judged on the quality of your work.
To receive full points, participants need to show their work, including deriving equations. As a general
rule of thumb, any common equations (such as the ones in the IPhO formula sheet) can be cited
without proof.

• Remember to state any approximations made and which system of equations were solved after every
step. Explicitly showing every step of algebra is not necessary. Participants may leave all final answers
in symbolic form (in terms of variables) unless otherwise specified. Be sure to state all assumptions.

Problems

• T1: Maxwell’s Demon

• T2: Euler’s Disk

• T3: Rocket

• T4: Magical Box

• T5: Quantum Computing

https://forms.gle/gZ7qzzrD7tD9Zz1o8
https://forms.gle/pVWJJqdjTbgMWaWk7
https://docs.google.com/document/d/14t7Vf9rDfox1xBe9XkX9N0Jo4N00ZEu25kEKDn6clCs/edit?usp=sharing
https://www.overleaf.com/read/bpqrxdjhjsvk
https://www.ioc.ee/~kalda/ipho/formulas.pdf
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List of Constants

Proton mass mp = 1.67 · 10−27 kg
Neutron mass mn = 1.67 · 10−27 kg
Electron mass me = 9.11 · 10−31 kg
Avogadro’s constant N0 = 6.02 · 1023 mol−1

Universal gas constant R = 8.31 J/(mol ·K)
Boltzmann’s constant kB = 1.38 · 10−23 J/K
Electron charge magnitude e = 1.60 · 10−19

1 electron volt 1 eV = 1.60 · 10−19 J
Speed of light c = 3.00 · 108 m/s
Universal Gravitational constant G = 6.67 · 10−11 (N ·m2)/kg2

Acceleration due to gravity g = 9.81 m/s2

1 unified atomic mass unit 1 u = 1.66 · 10−27 kg = 931 MeV/c2

Planck’s constant h = 6.63 · 10−34 J · s = 4.41 · 10−15 eV · s
Permittivity of free space ε0 = 8.85 · 10−12 C2/(N ·m2)
Coulomb’s law constant k = 1

4πε0
= 8.99 · 109 (N ·m2)/C2

Permeability of free space µ0 = 4π · 10−7 T ·m/A
Stefan-Boltzmann constant σ = 5.67 · 10−8 W/m2/K4
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T1: Maxwell’s Demon

Zed has a container divided by a wall into two chambers of equal volume V . The left chamber has N1

molecules and the right chamber has N2 molecules of some monatomic ideal gas (N1 < N2). Each gas
molecule has mass m and can be treated as a point particle. The entire system is isolated and is at
temperature T .

(a) (5 pts.) Let’s say that he makes a hole in the wall. Then there will be a net flow of molecules from
the right chamber to the left chamber. At equilibrium, let’s say each chamber has N = (N1 +N2)/2
molecules. By how much has the entropy increased?

Zed now wants to revert the container back to its original state with N1 and N2 molecules in each chamber.
He plans to achieve this by covering the hole with a door with area A that only opens towards the second
chamber.

(b) (5 pts.) He thinks that any molecule in the left chamber incident on the door will enter the right
chamber, and no molecules in the right chamber will enter the left one. Under such a model, what is
the initial rate of change in entropy of the system?

N,V, T N, V.T

Figure 1: Parts (c) and (d)

Under the assumptions made by part (b), Zed’s device violates the second law of thermodynamics. We’ll
now investigate why this actually does not happen for a particular kind of door. This door, of mass M , has
a hinge that exerts a restoring torque τ = Kθ when the door is open at an angle θ, where θ is not necessarily
small (Figure 1).

(c) (5 pts.) Explain in one or two sentences why this door behaves effectively like a hole in the wall with
area A′, and hence the second law of thermodynamics is not violated.

(d) (10 pts.) Estimate A′ in terms of the variables given and fundamental constants. You may make
appropriate simplifying assumptions.
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T2: Euler’s Disk

A thin, uniform disk of mass m and radius a is initially set at an angle α0 to the horizontal, on a frictionless
surface. It is given an initial angular velocity Ω0 with respect to a vertical axis passing through its center.

(a) (4 pts.) Determine Ω0 for the steady state case, where α̇ = α̈ = Ω̇ = 0.

(b) (2 pts) Write an expression for the total energy of the disk.

The disk is then moved onto a special surface with small bumps of height h spread over it – each bump is
separated by δ. As the disk climbs over a bump and falls back down, its impact is absorbed by the surface,
causing a net energy loss in the system. The disk is set in motion with the same initial conditions as before
but with α0 << 1

(c) (6 pts.) Assuming that this is the only source of energy loss, write a differential equation for α̇ in first
order to α.

(d) (4 pts.) Hence, write an approximate expression for Ω as a function of time.

(e) (2 pts.) Using this model, determine the time it takes for the frequency of the sound the disk makes
against the surface to reach the maximum audible frequency f0.
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T3: Rocket

OPhO organizers have a “propulsionless” rocket, which for simplicity can be assumed to be a 2-dimensional
rectangular box of mass 2M and horizontal length L. Assume that the horizontal sides of the box are
massless while the vertical sides of the box each have mass M . The rocket is initially at rest. We will now
explore the mechanism for how this rocket move. Suppose we have N particles of mass m/N each on the left
and right sides of the box. At time t = 0, we launch the N particles on the left side of the box together to
the right with velocity v

N . In addition, in intervals of time L
v , starting at t = 0, we launch a particle from

the right side of the box to the left side with velocity v. Once a particle reaches the opposite side of the box,
it is stopped. The particular mechanism to shoot and catch the particles can be ignored here. Assume that
this mechanism can conserve energy. After time t = NL

v , there will be N particles on each side of the box,
which is identical to the initial state.

Neglect relativistic effects in part (a) only.

(a) (1 pt.) According to classical (Newtonian) mechanics, what happens to the rocket? Does it move?

(b) (5 pts.) If v � c, how far does the rocket move? Answer in lowest nonzero order in v/c.

(c) (10 pts.) How far does the center of mass of the rocket system move? Once again, answer in lowest
nonzero order in v/c. Justify your answer.

(d) (6 pts.) Explain why this process cannot continue indefinitely. If it could continue forever, we would
able to move the rocket indefinitely with no propulsion.

(e) (5 pts.) Give an estimate for how long this process can continue. How far does the rocket move in
this time?
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T4: Magical Box

A cubical box of mass M and side length L sits on a horizontal, frictionless plane. The box is filled with an
ideal gas of particle mass m, particle volume density n, and initial temperature T0. One of the vertical walls
inside the cube is made of a highly conductive material, kept at a constant temperature Tb � T0. The wall
is so conductive that the temperature of gas instantaneously changes to Tb after rebounding. All other walls
are made of ideal insulators.

(a) (1 pt.) State, with a reasoning, the direction in which the box will start moving.

(b) (7 pts.) Approximate the initial acceleration a0 of the box. For this question, make sure your equation
is valid for Tb = T0 as well.

(c) (3 pts.) The acceleration of the box then decreases from a0 to af for a short time until t = τ0.
Determine af .

(d) (3 pts.) If τ1 is the time it takes for acceleration to level off for an identical box with the conductive
wall at temperature Tb

3 , calculate τ1
τ0

.
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T5: Quantum Computing

In this problem, you will learn the fundamentals of quantum computers, as well as the physics on how they
can be constructed! We have tried to provide as much background information as necessary, but if you
believe some part is missing or unclear, please fill out the clarifications form.

Introduction

Physicists use braket notation to describe vectors in quantum systems. When using a vector ~v to describe a
quantum state, the ket, written as |v〉 can be used. Both notations below are equivalent:

~v =

(
v1
v2

)
→ |v〉 =

(
v1
v2

)
The bra, on the other hand, is the conjugate transpose of the ket 〈v| = (|v〉)†. Given two vectors |v〉 and |w〉,
the braket 〈v|w〉 = |v〉 · |w〉 is the inner product of both vectors. This notation will be used throughout this
problem.

In any digital device, information is communicated via 0s and 1s, or binary code. The simplest units
of this information are called bits. Similar to a bit, the qubit can be represented as a linear combination of
two orthogonal states: quantum-0 and quantum-1, which are typically |0〉 and |1〉 . Here,

|0〉 =

(
1
0

)
, and |1〉 =

(
0
1

)
.

Typically, we write a single qubit state as

|Ψ〉 = a |0〉+ b |1〉 ,

where a, b ∈ C, and 〈Ψ〉Ψ = 1.

(a) (1 pt.) A qubit is prepared in the state a |0〉+ b |1〉 .

(i) What is the probability of measuring the qubit in the state |0〉?

(ii) What is the probability of measuring the qubit in the state |−〉 = |0〉 − |1〉?

Hint: If you are still confused about measurement (it’s tricky!), check out this qiskit article. You can
ignore all the parts with code, we’ll save those for the computer science students writing OCSO.

A quantum gate performs an unitary operator on a quantum state. Applying an operator (sometimes known
as a gate) to a qubit state can be represented in the diagram below.

|Ψ〉 Û Û |Ψ〉

where Û is a local unitary since it only acts on a single qubit. There are five important gates:

I =

(
1 0
0 1

)
, X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
, H =

(
1 1
1 −1

)
Here, I,X, Y, Z form the four Pauli matrices and H is known as the Hadamard gate, which we will use
later on when we talk about entanglement.

For example, if |Ψ〉 = 0.6 |0〉+ 0.8 |1〉 and apply the gate X =

(
0 1
1 0

)
, we end up with

X |Ψ〉 =

(
0 1
1 0

)(
0.6
0.8

)
=

(
0.8
0.6

)
= 0.8 |0〉+ 0.6 |1〉 .

https://qiskit.org/textbook/ch-states/representing-qubit-states.html#2.-The-Rules-of-Measurement-
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(b) (1 pt.) A qubit is prepared in the state |Ψ〉 = a |0〉+ b |1〉 . What is the probability of measuring the
qubit Û |Ψ〉 in the state |0〉? Express your answer in terms of a, b, and properties of the unitary Û .

The heart of quantum information lies in what we can do with more than a single qubit. If one qubit has two
dimensions (|0〉 and |1〉), then a two-qubit system can be represented in four dimensions. For a two qubit
system, the state can be written as a0 |00〉+a1 |01〉+a2 |10〉+a3 |11〉 , where |00〉 , |01〉 , |10〉 , |11〉 can be seen
as the “basis vectors.” If we have two independent qubits, i.e. |Ψ1〉 = a |0〉+ b |1〉 and |Ψ2〉 = c |0〉+ d |1〉 ,
we can represent their combined state using the tensor product, i.e.

|Ψ〉 = |Ψ1〉 ⊗ |Ψ2〉
= (a |0〉+ b |1〉)⊗ (c |0〉+ d |1〉)
= ac |00〉+ ad |01〉+ bc |10〉+ bd |11〉 .

Here, we can see that

|00〉 = |0〉 ⊗ |0〉 =


1
0
0
0

 , |01〉 = |0〉 ⊗ |1〉 =


0
1
0
0

 , |10〉 = |1〉 ⊗ |0〉 =


0
0
1
0

 , |11〉 = |1〉 ⊗ |1〉 =


0
0
0
1


Note that not every two qubit state can be written as a tensor product. When this occurs, we say that
they are entangled. We can immediately determine if a state is entangled by calculating its concurrence,
defined by

C = 2|a0a3 − a1a2|.

If C = 0, then the two qubits are separate and the system is separable. If C = 1, the system is maximally
entangled, such as

1√
2
|00〉+

1√
2
|11〉 .

Physically, this means that a measurement of one qubit directly leads to a “collapse” of the other qubit (this
is the classic example shown in popular science media). Note that 0 ≤ C ≤ 1.

We can change the concurrence using a control operation. For example,

|a〉

|b〉 X

performs the CNOT gate. The unitary X is applied to |b〉 if |a〉 = 1, otherwise nothing is done. That is, we
have:

|00〉 7→ |00〉
|01〉 7→ |01〉
|10〉 7→ |11〉
|11〉 7→ |10〉 .

The CNOT gate is an example of a global unitary, since it acts on more than one qubit. Global unitaries for
2 qubit systems can be written as a 4× 4 matrix. For example, we can write

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 ,

where |00〉 , . . . , |11〉 form the 4 standard basis vectors. We can combine local and global unitaries to create
entangled states. For example, consider the following circuit:
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|0〉 H

|0〉 X

The initial state is |Ψin〉 = |00〉 =


1
0
0
0

 . After applying the Hadamard gate H, the state becomes

|Ψmiddle〉 =
1√
2

(|0〉+ |1〉)⊗ |0〉 =
1√
2
|00〉+

1√
2
|10〉 =


1√
2

0
1√
2

0

 .

After applying the CNOT gate, the state becomes:

|Ψout〉 =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




1√
2

0
1√
2

0

 =


1√
2

0
0
1√
2

 =
1√
2
|00〉+

1√
2
|11〉 .

Note that we can avoid matrix multiplication in this last step by seeing what CNOT does on each term of
|Ψmiddle〉 . CNOT will not have an effect on 1

2 |00〉 since the first qubit is |0〉 . CNOT will have an effect on
1
2 |10〉 since the first qubit is a |1〉 , so it’ll flip the second qubit to a |1〉 , giving us the map 1

2 |10〉 7→ 1
2 |11〉 .

(c) (1 pt.) Construct a quantum circuit where the input state is |00〉 and the output state is i√
2
(|0〉 − |1〉)

using only X,Y, Z,H,CNOT gates.

Quantum Teleportation

Quantum teleportation is the transfer of the quantum state of one qubit to another (not the actual physical
qubit) using a shared entangled resource and two classical bits of information. It is performed using the
following circuit.

|Ψin〉 = α |0〉+ β |1〉

|0〉

|0〉 |Ψout〉

A: H

B: H X

C: X X Z

The gate measures the qubit (returns either a 0 or a 1) and the wider wire represents that information

that flows through this wire is a classical bit.

(d) (1 pt.) Verify that the above circuit does teleport the qubit from the top branch to the bottom branch
by looking at the specific case of α = β = 1√

2

(e) (3 pts.) After the first operation is performed on branch C, the branch is brought a very far distance
from the other two branches. By doing so, it appears we can create faster-than-light communication
during the teleportation process, which is impossible! Explain why there is no contradiction. Justify
rigorously.
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We can analyze this by performing matrix multiplication, but using a circuit-based approach is much cleaner.
To do so, we need to use the Griffiths-Niu Theorem.

(f) (2 pts.) The following circuits, according to the Griffiths-Niu Theorem, are equivalent:

U

=

U

Prove the Griffiths-Niu Theorem.

Using this theorem, we can redraw our circuit as:

|Ψin〉 = α |0〉+ β |1〉 a

|0〉 b

|0〉

A: H Z

B: H X

C: X X

(g) (1 pts.) For a control-Z gate, it doesn’t matter which branch is the control. In other words,

Z =
Z

Prove this relationship.

Using the above problem, we can flip the control-Z gate. Then using the identity Z = HXH, we can reduce
it further:

|Ψin〉 = α |0〉+ β |1〉 a

|0〉 b

|0〉

A: H H X H

B: H X

C: X X

Since H2 = I, we can simplify the top part. Furthermore, we can introduce another CNOT between the first
and the second branch.

|Ψin〉 = α |0〉+ β |1〉 a

|0〉 b

|0〉

A: X H

B: H X X H

C: X X

We were allowed to introduce this CNOT gate since XH |0〉 = H |0〉 . This actually makes it easier using the
following problem:
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(h) (2 pts.) Prove that the below two circuits are equivalent.

X X

X X

=

X

Using this substitution, we end up with:

|Ψin〉 = α |0〉+ β |1〉

|0〉

|0〉

A: X H

B: H

C: X

We can now introduce another CNOT gate, which doesn’t do anything since C will always be |0〉.

|Ψin〉 = α |0〉+ β |1〉

|0〉

|0〉

A: X X H

B: H

C: X

Three alternating CNOT gates is equivalent to the SWAP gate, so we can write:

|Ψin〉 = α |0〉+ β |1〉

|0〉

|0〉

A: H

B: H

C:

where we clearly see a swapping that occurs between the top and bottom branch!

Building Quantum Computers

According to theoretical physcist David P. Divencenzo, there are five necessary (but not necessarily sufficient)
criteria to build a quantum computer:

• A well-characterized qubit.

• The ability to initialize qubits.

• Long and relevant decoherence times.

• A “universal set” of quantum gates.

• The ability to measure qubits.
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In this section, we will focus on how we can create qubits and how we can create a universal set of quantum
gates. Consider two energy levels E1, E0 as the qubit states |1〉 , |0〉 respectively. Assume that

E1 =
1

2
~ω, E0 = −1

2
~ω.

Also assume that the qubit state is time varying, in the form of:

|Ψ(t)〉 = A(t) |0〉+B(t) |1〉 .

(i) (14 pts.) Using the above setup, show how we can implement the quantum gates X,Y, Z. Hint: The
Schrodinger Equation tells us

i~
∂

∂t
|Ψ(t)〉 = Ĥ |Ψ(t)〉 ,

where Ĥ =

(
E0 0
0 E1

)
.


